

DEHNrecord SD

Multifunktionales Mess- und Analysegerät zur Überwachung der Spannungsqualität

Handbuch

Impressum Seite 2 von 69

Hersteller

DEHN SE + Co KG Hans-Dehn-Str. 1 92306 Neumarkt Deutschland

Tel. +49 9181 906-0 www.dehn.de

Service Hotline – Technischer Support

Tel. +49 9181 906-1750 technik.support@dehn.de

Inhaltsverzeichnis Seite 3 von 69

lm	pressum Hersteller Service Hotline — Technischer Support	2 2 2
1.	Begriffe und Abkürzungen	6
2.	Sicherheit 2.1 Bestimmungsgemäßer Gebrauch	7 7
3.	Lieferumfang 3.1 Zubehör (optional)	8
4.	Leistungsbeschreibung 4.1 Messen der Spannungsqualität nach EN 61000-4-30, Klasse A 4.2 Weitere Messmöglichkeiten 4.3 Geräte Varianten 4.4 Messorte, Messaufgaben 4.5 Messwerte – Erfassung 4.6 Messwerte – Auswertung Spannungsqualität (PQ) 4.7 Messstellenkonzept 4.8 Konfiguration 4.9 Ereignisse und Ausgangskanäle	9 10 10 11 11 12 13 14 16
5.	Gerätebeschreibung	18
6.	Montage 6.1 Montage einzeln 6.2 Montage mit Überspannungsschutzgerät und Kammschiene 6.3 Einsatz bei Überspannungskategorie IV	20 20 21 22

Inhaltsverzeichnis Seite 4 von 69

7.	Ansc	hluss	24
	7.1	Anschluss DRC SD 1 1 – ArtNr. 910 920	24
	7.2	Anschluss DRC SD 2 1 – ArtNr. 910 921	25
	7.3	Impulsstromsensor DRC SD ICS (ArtNr. 910 935) *	26
	7.4	Stromsensoren	27
8.	Inbe	triebnahme	28
	8.1	Schritt 1 – Anlegen der Spannung	28
		Schritt 2 – Verbindung zum Webserver	28
		Schritt 3 – Prüfung	28
	8.4	Schritt 4 – Konfiguration	29
9.	Funk	tionsweise	30
	9.1	User-Interface	30
	9.2	Blockschaltbild	32
		Messwerte	33
		Modbus	34
	9.5	Kommunikation über das Netzwerk	35
10	. Gerä	te-Einstellungen	36
	10.1	Geräte-Einstellungen Experten-Modus	36
	10.2	Allgemein	36
		Anzeige LED	36
	10.4	Digitale Eingänge, digitale Ausgänge und Logik	37
		Netzwerk	41
		Netzfrequente Überspannungen nach EN 50550 - POP Strommessung	43 45
		Netzsignalspannungen	47
	10.8	Zurücksetzen auf Werkseinstellungen	47
		Laracio Leri aar 1101110011101119011	17

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

Inhaltsverzeichnis Seite 5 von 69

PQ K	onfiguration	48
11.1	Allgemein	48
11.2	Spannungshöhe	48
11.3	Frequenz	49
		49
11.5	Einbruch, Überhöhung, Unterbrechung der Spannung	50
		50
		50
	9	51
		51
		52
		52
		53
11.13	Werte für PQ-Merkmale	54
Techr	nische Daten	57
Wartı	ung	69
	3	69
	, , 9	70
13.3	5 5	70
13.4	9	70
	111.1 111.2 111.3 111.4 111.5 111.6 111.7 111.18 111.19 111.11 111.13 Wart 13.1 13.2	Flicker Einbruch, Überhöhung, Unterbrechung der Spannung Einbruch Überhöhung Inseptie Unterbrechung Inseptie Unsymmetrie Insepti

1. Begriffe und Abkürzungen

Seite 6 von 69

Р	Q	ŀ	ower	((ua	1.	ty –	5	p	a	nı	าเ	ır	gs	gι	ıa	1	ta	t
---	---	---	------	---	-----	----	------	---	---	---	----	----	----	----	----	----	---	----	---

DRC SD DEHNrecord SD

ÜSS Überspannungsschutz

SPD Surge Protective Device – Überspannungsschutzgerät (ÜSSG)

POP Power Frequency Overvoltage Protection Device — Schutzeinrichtung gegen netzfrequente Überspannungen

UTC Koordinierte Weltzeit, Coordinated Universal Time

MSRL Mess-, Steuer-, Regel- und Laborgeräte entsprechend EN 61010-1

REG Reiheneinbaugeräte

2. Sicherheit Seite 7 von 69

WARNUNG Gefahr durch Stromschlag

Montage und Anschluss eines DEHNrecord SD darf nur durch eine Elektrofachkraft gemäß den Installationsnormen des Landes erfolgen.

Vor der Montage ist das DEHNrecord SD (DRC SD) und das Zubehör auf äußere Beschädigungen zu kontrollieren.

Sollte eine Beschädigung oder ein sonstiger Mangel festgestellt werden, darf das DRC SD nicht montiert werden.

Bei Belastungen, die über den ausgewiesenen Werten liegen, können das DRC SD und die daran angeschlossenen elektrischen Betriebsmittel zerstört werden.

Eingriffe und Veränderungen am DRC SD führen zum Erlöschen des Gewährleistungsanspruchs.

Wird das DRC SD zusammen mit einem Überspannungsschutzgerät (Surge Protective Device, SPD) in Umgebungen mit Überspannungskategorie IV eingesetzt, muss sich vor einem Zugriff auf das Gerät vergewissert werden, dass das SPD funktionsfähig ist.

Sollte das SPD einen Defekt anzeigen, muss zuerst das SPD in Stand gesetzt werden, bevor auf das DRC SD zugegriffen werden darf. Dazu ist die Einbauanleitung des SPD zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der Einsatz des DRC SD ist zur Verwendung im Schaltschrank und nur im Rahmen der in diesem Handbuch genannten Bedingungen zulässig.

Wird das Gerät in einer nicht festgelegten Weise benutzt, kann der vom Gerät unterstützte Schutz beeinträchtigt sein.

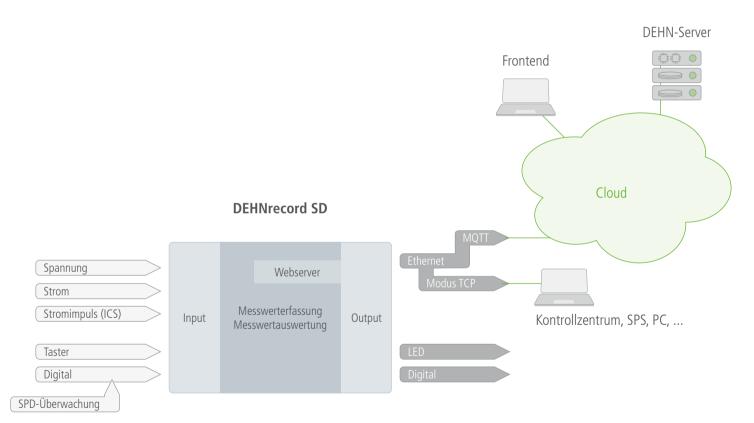
Es darf nur zugelassenes Zubehör verwendet werden.

Für die Synchronisierung ist ein externes Zeitsignal von einem Zeitserver notwendig (siehe Kapitel 9.5 Kommunikation über das Netzwerk)

3. Lieferumfang Seite 8 von 69

DEHNrecord SD *
Steckverbinder IO
Steckverbinder CM
Einbauanleitung

3.1 Zubehör (optional)


Impulsstromsensor DRC SD ICS 100, Art.-Nr. 910 935 *
Stromsensoren (Klappstromwandler), Art.-Nr. 910 936
Stromsensoren (Rogowski-Spulen), Art.-Nr. 910 937
Kammschienen (passend zum Überspannungsschutzgerät)
zur Verwendung in Kombination mit einem Überspannungsschutzgerät (SPD)

Impulsstromsensor DRC SD ICS

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

Schematische Funktionsübersicht

4.1 Messen der Spannungsqualität nach EN 61000-4-30, Klasse A

Überwacht werden: Spannungshöhe, Frequenz, Flicker, Einbruch, Überhöhung, Unterbrechung, Unsymmetrie, Oberschwingungen, Zwischenharmonische, Signalspannungen, schnelle Spannungsänderungen.

Messung/Erfassung	Analyse und Auswertung
Spannungsqualität nach EN 61000-4-30:2015, Klasse A	Nach Norm EN 50160 und gleichzeitig nach individuellen Vorgaben

4.2 Weitere Messmöglichkeiten

Messung/Erfassung	Analyse und Auswertung					
Impulsströme 8/20 µs und 10/350 µs bis 100 kA *	Nach Maximum, Dauer, Anstiegszeit und Einzel-/Summenladung					
Strom, Leistung, Energie über bis zu 4 Stromsensoren (Rogowski-Spulen oder Klappstromwandler)	Getrennt für jede Phase bzw. dem Nullleiter sind Grenzwerte für Strom, Leistung (P,Q,S), Stromrichtung, Nullstrom und Energie (global) para- metrierbar					
Netzfrequente Überspannungen (POP)	Nach Norm EN 50550 und zusätzlich individuell mit Unterscheidung Über/Unterschreitung					
Digitale Zustände an 3 Eingängen	Nach Zustand/Änderung mit Zählerfunktion. Die Eingänge sind untereinander sowie mit anderen Gerätefunktionen logisch verknüpfbar.					

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

4.3 Geräte Varianten

DRC SD 1 1, Art.-Nr. 910 920: Spannungsversorgung 230 Volt über L1 der Messspannung.

Das Gerät kann Versorgungsunterbrechungen bis 5 Sekunden überbrücken.

DRC SD 2 1, Art.-Nr. 910 921: Spannungsversorgung 24 Volt DC extern.

Erfasst Unterbrechungen und Einbrüche auch über 5 Sekunden entsprechend EN 61000-4-30,

Klasse A, wenn die externe Spannungsversorgung unterbrechungsfrei ist.

4.4 Messorte, Messaufgaben

Energieversorger

Spannungsqualität (Monitoring, Bewertung) Energieverbrauch, Lastgang

Energieverbraucher

Energiemessung und -überwachung Spannungsqualität (Monitoring, Analyse)

Einbauort

Ortsnetzstationen, Kabelverteilerschränke,

Messwandlerschränke, Übergabepunkte zu Kundenanlagen, Hauptverteilungen, Unterverteilungen, Endgeräteebene. Für eine normative Bewertung der Spannungsqualität nach EN 50160 ist der bevorzugte Einbauort der Übergabe-Punkt

von Versorger zu Verbraucher.

4.5 Messwerte – Erfassung

Zyklische Messung (SoL – Sign-of-Life-Daten)

Messwerte werden zyklisch an die Cloud übertragen und stehen dort zur graphischen Darstellung im Raster der Beobachtungszeiträume (1 Woche) zur Verfügung. Für die Auswertung und Übertragung werden die Messwerte auf 5-Minuten-Intervalle (Strom, Leistung, Energie) bzw. 10-Minuten-Intervalle (PQ) UTC-zeitsynchron aufgerechnet.

Ereignisbasierend

Bei Über-/Unterschreitung eines parametrierten Grenzwerts wird ein Ereignis generiert, zu dem das Gerät die ermittelten Kennwerte und Detaildaten in die Cloud überträgt.

Dadurch wird der Umfang von gewonnen Messwerten auf die relevanten Daten reduziert.

Dies kann aus allen Messfunktionen heraus

geschehen. In Verbindung mit den zeitlich hochaufgelösten Detaildaten liefert diese Funktion einen detaillierten Störschrieb. Ereignisse können zudem verschiedenen Ausgangskanälen zugeordnet werden: LED, digitaler Ausgang, E-Mail. Ereignisse sind kategorisiert nach Gerätegrundfunktionen (Gerät, PQ, Impulsstrom, ...) und deren Teilfunktionen – z.B. bei PQ: Spannungshöhe, Frequenz, Unsymmetrie.

Anwendergesteuert

Der Anwender kann durch Tastenbetätigung am Gerät oder über die Cloud eine schnelle Datenübermittlung starten.

Dabei werden über einen Zeitraum von 10 Minuten die 3-Sekunden-Mittelwerte kontinuierlich in die Cloud gesendet. Dies ermöglicht den detaillierten Einblick in den aktuellen Ist-Zustand

4.6 Messwerte – Auswertung Spannungsqualität (PQ)

Norm-Parametersatz

Damit im Bereich der öffentlichen Elektrizitätsversorgungsnetze die ermittelten Ergebnisse vergleichbar sind, werden die Grenzwerte nach EN 50160 angewendet. Diese sind nicht durch den Anwender veränderbar.

PQ-Übersicht

Wenn das Gerät im DEHNmonitor PQ (Cloud von DEHN) registriert ist, sind die Ergebnisse der Normanalyse für alle Nutzer in der Cloud sichtbar. Die Positionen der Geräte werden verallgemeinert

Individueller Parametersatz

Parallel dazu besteht die Möglichkeit, gleichzeitig anwender- oder ortsspezifische Belange zu überwachen. Die Grenzwerte für Ereigniserkennungen können dazu individuell vorgegeben werden.

Auch der Beginn der Anwendung eines individuellen Parametersatzes kann definiert werden (sofort oder per Datum). Damit kann ein Parametersatz gezielt für einen Beobachtungszeitraum gesetzt werden.

Beispiel: Es kann ein gewünschter Zielkorridor der Spannungsmerkmale überwacht werden

Beispiel: Überwachung für ein industrielles Umfeld nach den Vorgaben der Norm IEC 61000-2-4

4.7 Messstellenkonzept

Messstelle

Das Messstellenkonzept steht nur in der Cloud von DEHN, dem DEHNmonitor PQ, zur Verfügung. Jedes Gerät ist ab Fertigung über seine Seriennummer einer virtuellen Messstelle im DEHNmonitor PQ zugeordnet. Das DEHNrecord SD wird über die Messstelle konfiguriert und liefert Daten an die Messstelle zurück.

Die virtuellen Messtellen haben einen Namen und können individuell konfiguriert werden. Der Nutzer kann "seine" Geräte über eigene Messstellen verwalten (Name, Position, …).

Bei einem Austausch eines DEHNrecord SD bleiben die "historischen" Daten in der Messstelle erhalten. Über die Seriennummer kann der Messstelle wieder ein neues/anderes Gerät zugewiesen werden.

Messstellen können auch mit anderen Nutzern/Organisationen geteilt werden. Voraussetzung ist die Registrierung in der Cloud.

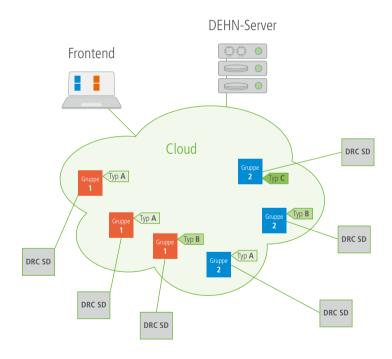
Messstellen-Typ

Ein Messstellentyp definiert eine bestimmte Konfiguration (Parameter, Grenzwerte, Ausgangskanäle) die mehreren DRC SD zugeordnet werden kann.

Beispiel: Der Messstellentyp "IT-Kunde" wertet spezielle Parameter aus, die für Rechenzentren relevant sind.

Änderungen am Messstellen-Typ werden automatisch an alle Messstellen mit dem entsprechenden Messstellen-Typ übertragen.

Messstellen-Knoten


Messstellen können gruppiert werden. Dadurch sind z.B. gemeinsame Auswertungen möglich. Innerhalb der Gruppen können die Messstellen-Typen unterschiedlich sein und z.B. unterschiedliche Grenzwerte beim Strom auswerten.

Beispiel: Alle Messstellen von der Stadt "Augsburg" werden gruppiert. So wird eine regionale Auswertung über z.B. 100 Messstellen möglich.

Prinzip des Messstellen-Konzepts

Messstellen vom gleichen Messstellen-Typen verhalten sich gleich und lassen sich über die Cloud problemlos und mit wenig Aufwand parametrisieren. Das ist ein entscheidender Vorteil für die Verwaltung vieler Geräte.

Dieses Konzept ist im DEHNmonitor PQ verfügbar.

4.8 Konfiguration

Webserver

Die Grundeinstellungen können über den internen Webserver eingegeben werden: Standort, Zuordnung und Typ der externen Spulen/Wandler zur Strommessung, Parameter der Netzsignalspannung. Genauere Erklärungen zu den Geräteeinstellungen finden sich im Kapitel 10.4.

Modbus TCP

Der Gerätezugriff per Ethernet-Schnittstelle ermöglicht den Zugriff auf Parameter, Grenzwerte, aktuelle, zyklische Daten/Stati und Ereignisdaten.

Cloud-Zugang

Über den DEHNmonitor PQ kann das Gerät konfiguriert werden und man hat Zugriff auf die aktuellen, zyklischen und zurückliegenden Daten/Stati/Ereignisdaten inkl. Detailverläufe.

Zum gegenwärtigen Zeitpunkt ist der DEHNmonitor PQ noch im Testbetrieb.

4.9 Ereignisse und Ausgangskanäle

Ereignisse

Ereignisse werden erzeugt durch:

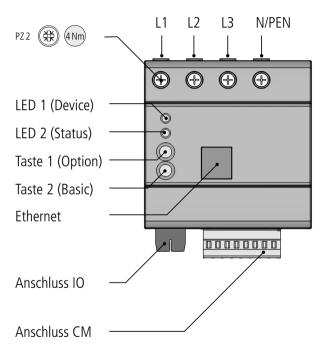
- Messwert-Auswertung (jede Überschreitung eines Grenzwertes aller Messfunktionen erzeugt ein Ereignis)
- Digitaler Eingang
- Tastendruck
- Befehl aus der Cloud
- das Gerät selbst

Beispiel: Spannungsmessung, Überschreitung eines Grenzwertes

Beispiel: Digitaler Eingang, SPD-Überwachung Beispiel: Taste 2 kurz drücken -> Start Webserver, LED 1 (Device) leuchtet blau.

Beispiel: Geräteupdate -> "Firmware-Update erfolgreich" wird in die Cloud gemeldet

Ausgangskanäle


Es gibt drei Ausgangskanäle:

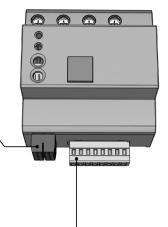
- Ethernet (Cloud, Modbus TCP)
- LED
- Digitalausgang

Die E-Mail-Benachrichtigung erfolgt über die Cloud (DEHNmonitor PQ).

Beispiel: Verbindungsaufbau Cloud -> LED 1 (Device) grün Beispiel: SPD-Überwachung, ein digitaler Eingang löst an der Messstelle eine E-Mail aus und schaltet LED 2 (Status) auf rot/gelb 5. Gerätebeschreibung Seite 18 von 69

Anschlussquerschnitt: 1,5 - 6 mm 2 fein-/mehrdrähtig 1,5 - 10 mm 2 eindrähtig

Zur Entriegelung der Push-In-Anschlüsse wird ein Schlitz-Schraubendreher (Gr. 0) benötigt


Bezeichnung	Funktion				
L1	Messeingang und Spannungsversorgung bei Modell DRC SD 1				
(L1), L2, L3, N	Messeingang				
LED 1 (Device)	grün (blinken): Start grün (leuchten): Cloudverbindung aktiv blau: Webserver aktiv gelb: Aktion 1 aktiv rot: Aktion 2 aktiv (RGB-LED, aktive Statusmeldungen werden nacheinander angezeigt)				
leuchtet grün: Spannungsqualität ok (in Werkseinstel (RGB-LED, konfigurierbar, kann weiteren Gerätefunktionen zugeordnet werden)					
Taste 1 (Option)	kurz (< 1 s): Aktion 1: schnelle Datenübermittlung starten lang (> 5 s): Aktion 2: Geräte Stopp/Start lang (> 10 s): Zurücksetzen auf Werkseinstellungen				
Taste 2 (Basic)	kurz (< 1 s): Webserver aktivieren lang (> 5 s): Geräte-Reset auslösen				
Netzwerkverbindung: Ethernet Verbindung zu internem Webserver, Modbus TCP, Cloud					
Anschluss IO	Anschlüsse für Impulsstromsensor, Spannungsversorgung int./ext., Digitale Ein- und Ausgänge				
Anschluss CM	Anschlüsse für Stromsensoren				

Anschluss IO (Input, Output, Versorgung, Impulsspule)

Bezeichnung		Klemme		
Impulsstromsensor	lmp2	2	1	lmp1
Version 24 Volt (Modell DRC SD 2) Ext. Spannungsversorgung +24 Vbc Version 230 Volt (Modell DRC SD 1) Hilfsspannung, Ausgang +12 Vbc, ausschließlich für den Betrieb der potentialfreien digitalen Eingänge	Ue-	4	3	Ue+ (+24 V in) Ue+ (+12 V out)

	⊖ Polarität beachten! ⊕							
Input 1: max. 30 V _{DC}	I1.2	6	5	11.1				
Input 2: max. 30 V _{DC}	12.2	8	7	12.1				
Input 3: max. 30 V _{DC}	13.2	10	9	I3.1				

Output 1 (potentialfreier Kontakt) max. 30 V, max. 500 mA	01.2	12	11	01.1
Output 2 (potentialfreier Kontakt) max. 30 V, max. 500 mA	02.2	14	13	02.1

Anschluss CM (Stromsensoren)

Klemme	1	2	3	4	5	6		8
Bezeichnung	IL1.1	IL1.2	IL2.1	IL2.2	IL3.1	IL3.2	IN.1	IN.2
Stromsensor	L1		L2		L	3	١	l

Anschlussquerschnitt Stecker (push-in):

0,08 - 2,5 mm² eindrähtig

0,25 -1,5 mm² mit Aderendhülse

Zur Entriegelung der Push-In-Anschlüsse wird ein Schlitz-Schraubendreher (Gr. 0) benötigt

6. Montage Seite 20 von 69

6.1 Montage einzeln

Die Montage des Geräts erfolgt auf einer 35mm-Hutschiene nach EN 60715. Einsatz in Bereichen mit Überspannungskategorie III.

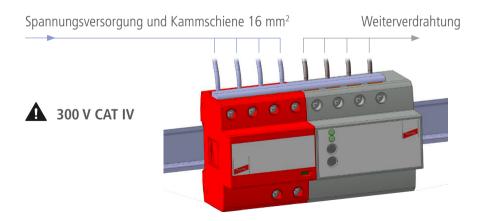
Vorsicherung

Passend zur Anschlussleitung muss die Vorsicherung gewählt werden, z.B. bei 1,5 mm² -> B 16A

6. Montage Seite 21 von 69

6.2 Montage mit Überspannungsschutzgerät und Kammschiene

Diese Kombination ist u. a. für den Einsatz in Bereichen mit Überspannungskategorie IV. Zur Verbindung mit einem Überspannungsschutzgerät (SPD) gibt es passende Kammschienen. Mehr Informationen hierzu im folgenden Kapitel "Einsatz bei Überspannungskategorie IV".


Montage und Anschluss eines DEHNrecord SD sowie eine mögliche Weiterverdrahtung über dessen Anschlussklemmen darf nur durch eine Elektrofachkraft gemäß den Installationsnormen des Landes erfolgen.

Vorsicherung

Die Vorgaben des jeweiligen SPDs sind zu beachten.

Weiterverdrahtung

Bei einer Weiterverdrahtung über die Klemmen des DRC ist die Vorsicherung entsprechend zu wählen.

Die Rastelemente der Geräte besitzen eine Dauerentriegelungsposition, um ein gemeinsames Aufsetzen/Entnehmen auf die Hutschiene zu erleichtern 6. Montage Seite 22 von 69

6.3 Einsatz bei Überspannungskategorie IV

Grundsätzlich sind die Strom- und Spannungs-Messeingänge des DEHNrecord SD für die Messkategorie 300 V CAT III nach EN 61010-2-030 ausgelegt. Diese Messkategorie beinhaltet entsprechende Prüfpegel (4 kV) für Überspannungskategorie III bei 300 V nach EN 60664.

Befindet sich das DEHNrecord SD im Schutzbereich eines Überspannungsschutzgerätes (SPD), so ist auch der Einsatz bei Überspannungskategorie IV möglich. Das SPD muss die Überspannungen auf ein Level unter 2,5 kV begrenzen. Das SPD muss eine optische Defektanzeige haben und sollte im gleichen Sichtbereich wie das DEHNrecord SD sein.

Im Schutzbereich des SPD wird für die Strom- und Spannungsmesseingänge des DEHNrecord SD die Messkategorie 300 V CAT III erreicht.

Die Sicherheitshinweise aus Kapitel 2 sind zu beachten!

Es ist zu empfehlen, die Funktionalität der eingesetzten Blitzstrom- und Überspannungs-Ableiter (z. B. DEHNventil, DEHNvenCi, DEHNshield, DEHNvap, DEHNguard, usw.) zu überwachen. Siehe hierzu die beispielhafte Überwachung des FM-Kontaktes auf den folgenden Seiten in Kapitel 7.1 und 7.2.

Strommessung mit Klappwandlern DRC SD SCS 100 (Art.-Nr. 910 936) unter CAT IV Bedingungen:

Diese können verwendet werden wenn der Schutz des SPDs auch für die Stromleiter gilt, an denen gemessen wird.

Strommessung mit Rogowski-Spulen DRC SD RCS 1000 (Art.-Nr. 910 937) unter CAT IV Bedingungen:

Diese können bis 600 V CAT IV eingesetzt werden.

Der Schutz des SPDs muss nicht zwingend für die Stromleiter gelten, an denen gemessen wird.

6. Montage Seite 23 von 69

Beispiel:

Installation des DEHNrecord SD mit einem SPD in einer Umgebung mit Überspannungskategorie IV. Im Schutzbereich des SPD (grüner Bereich) wird die für das DEHNrecord SD notwendige Messkategorie 300 V CAT III erreicht. Zugleich überwacht das DEHNrecord SD die Funktionalität des SPD über dessen Fernmeldekontakt.

Eine Strommessung ist wahlweise mit Klappwandlern (DRC SD SCS 100) oder Rogowski-Spulen (DRC SD RCS 1000) möglich.

7. Anschluss Seite 24 von 69

7.1 Anschluss DRC SD 1 1 – Art.-Nr. 910 920

Messeingänge

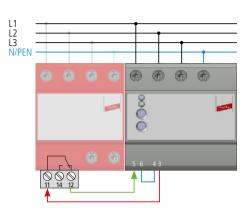
L1, L2, L3 und N werden mit Kabeln oder einer passende Kammschiene angeschlossen.

Spannungsversorgung

Das Gerät wird über den Messeingang L1 und N versorgt und kann Versorgungsunterbrechungen bis 5 s überbrücken.

Bei längeren Unterbrechungen werden die Daten mit reduzierter Genauigkeit erfasst.

Versorgungsspannung U_B: 230 V_{AC} (50 Hz), max. 30 mA


Digitale Ein- und Ausgänge

Über einen Eingang kann z.B. zusätzlich der Status eines SPD überwacht werden. Über einen Ausgangskanal (LED, digitaler Ausgang, E-Mail) kann ein Ereignis signalisiert werden.

Hilfsspannung

Zum Betrieb der galvanisch getrennten digitalen Eingänge wird die Hilfsspannung (Ue+, Ue-) verwendet.

Anschlussquerschnitt L1/L2/L3/N: 1,5 - 6 mm² Anschlussquerschnitt Stecker: 0,25 - 1,5 mm²

Beispiel-Verdrahtung eines SPDs mit Fernmeldekontakt:

- · SPD-Kontakt (Anschluss 11) mit Hilfsspannung 12 V_{DC} (Stecker IO Kl. 3) verbinden
- Rückmeldung von SPD-Kontakt (Anschluss 12 oder 14) an Digitaleingang I1.1 (Stecker IO Kl. 5)
- · Verbindung Masse (Stecker IO Kl. 4 und 6)

Konfiguration über den DRC-Webserver:

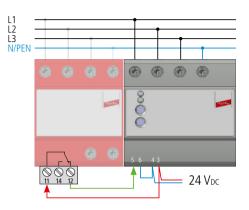
Der Digitaleingang wird einem Ausgangskanal zugeordnet. Sobald der Kontakt der SPD öffnet wird z.B. eine Information per E-Mail versendet, eine LED geschaltet oder ein Digitalausgang aktiviert.

7. Anschluss Seite 25 von 69

7.2 Anschluss DRC SD 2 1 – Art.-Nr. 910 921

Messeingänge

L1, L2, L3 und N werden mit Kabeln oder einer passende Kammschiene angeschlossen.


Spannungsversorgung 24 VDC extern

Das DRC wird über eine unterbrechungsfreie, externe Spannungsquelle versorgt. So können auch Spannungsunterbrechungen und -einbrüche > 5 s entsprechend EN 61000-4-30, Klasse A erfasst werden.

Digitale Ein- und Ausgänge

Über einen Eingang kann z.B. zusätzlich der Status eines SPD überwacht werden. Über einem Ausgangskanal (LED, digitaler Ausgang, E-Mail) kann ein Ereignis signalisiert werden.

Anschlussquerschnitt L1/L2/L3/N: 1,5 - 6 mm² Anschlussquerschnitt Stecker: 0.25 - 1.5 mm²

Beispiel-Verdrahtung eines SPDs mit Fernmeldekontakt:

- · SPD-Kontakt (Anschluss 11) mit Versorgungsspannung 24 Vpc (Stecker IO Kl. 3) verbinden
- Rückmeldung von SPD-Kontakt (Anschluss 12 oder 14) an Digitaleingang I1.1 (Stecker IO Kl. 5)
- · Verbindung Masse (Stecker IO Kl. 4 und 6)

Konfiguration über den DRC-Webserver:

Der Digitaleingang wird einem Ausgangskanal zugeordnet. Sobald der Kontakt der SPD schließt wird z.B. eine Information per E-Mail versendet, eine LED geschaltet oder ein Digitalausgang aktiviert.

7. Anschluss Seite 26 von 69

7.3 Impulsstromsensor DRC SD ICS (Art.-Nr. 910 935) *

Mit dem optional erhältlichen Impulsstromsensor können Impulsströme an **isolierten** Leitern bis 100 kA (8/20 μs, 10/350 μs) erfasst werden.

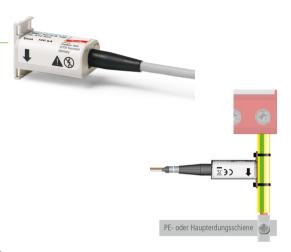
Typische Montageorte sind Erdungsanbindungen von Überspannungsschutzgeräten, Anlagen und Blitzschutzbauteilen.

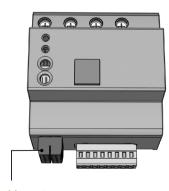
Der Sensor muss über den Webserver oder die Cloud aktiviert werden. Es können dann auch weitere Einstellungen wie z.B. die Triggerschwelle konfiguriert werden.

Montage des Sensors

Der Sensor kann mit zwei Kabelbindern am zu überwachenden Strompfad befestigt werden. Der Pfeil zeigt die positive Impulsstromrichtung. Um Einflüsse durch benachbarte Leiter zu vermeiden, sollte die Messung nur an einzeln verlegten Leitern erfolgen. Die Montage darf nur auf isolierten, nicht gefährlich aktiven Leitern erfolgen.

Anschluss am Gerät


Der Sensor wird am DEHNrecord SD, Anschluss IO angeschlossen:


brauner Draht \rightarrow Klemme 1 = Imp1 weißer Draht \rightarrow Klemme 2 = Imp2

Maximale Abmantelung der Anschussleitung: 5 mm

Test und Konfiguration

Über den internen Webserver des DEHNrecord SD oder die Cloud kann der Anschluss des Impulsstromsensors konfiguriert werden.

Anschluss IO

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

7. Anschluss Seite 27 von 69

7.4 Stromsensoren

Mit den als Zubehör erhältlichen flexiblen Rogowski-Stromsensoren (DRC SD RCS 1000, Art-Nr. 910 937) oder den Klappstromwandlern (DRC SD SCS 100, Art-Nr. 910 936) können pro Gerät bis zu 4 netzfrequente Lastströme erfasst und daraus Leistungs- und Energiewerte berechnet werden.

Die Verwendung ist über den Webserver zu parametrieren und kann individuell konfiguriert werden.

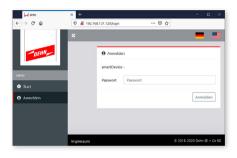
Anschluss am Gerät

Die Sensoren werden am Anschluss CM angeschlossen.

Anschluss CM (Stromsensoren)

Klemme	1	2	3	4	5	6	7	8
Bezeichnung	IL1.1	IL1.2	IL2.1	IL2.2	IL3.1	IL3.2	IN.1	IN.2
Stromsensor	L1		L2		L	3	N	1

8. Inbetriebnahme Seite 28 von 69


8.1 Schritt 1 – Anlegen der Spannung

Nach Anlegen der Spannung: LED 1 (Device) blinkt grün bei korrekter Spannungsversorgung
LED 2 (Status) leuchtet grün bei guter Spannungsqualität (in Werkskonfiguration)

8.2 Schritt 2 – Verbindung zum Webserver

DEHNrecord SD direkt mit Rechner verbinden:

- 1. Rechner konfigurieren: IP 169.254.0.1, Sub. 255.255.255.0
- 2. Rechner und DEHNrecord SD direkt mit Netzwerkkabel verbinden
- 3. Webserver aktivieren: Taste 2 (Basic) kurz drücken, LED 1 (Device) leuchtet blau
- 4. Zugriff mit Browser: http://169.254.0.10
 Kennwort im Auslieferzustand: smartdevice

8.3 Schritt 3 – Prüfung

Nach erfolgreicher Anmeldung können z.B. folgende Eigenschaften geprüft und Einstellungen getätigt werden: Drehfeldrichtung der Spannungsanschlüsse, Anschluss der Strommessspulen, Anschluss des Impulsstromsensor.

8. Inbetriebnahme Seite 29 von 69

8.4 Schritt 4 – Konfiguration

Über den Webserver kann das DEHNrecord SD passend konfiguriert werden.

Eine Anleitung für die Geräteeinstellungen findet sich in Kapitel 10.

Der Zugang zum Cloudserver ist vorkonfiguriert (MQTT, Port 8883).

LED 1 (Device) leuchtet dauerhaft grün, sobald der Zugriff auf den DEHNmonitor PQ funktioniert.

Produktregistrierung

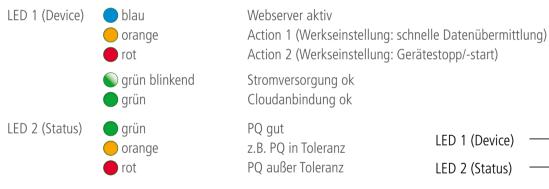
Für die erfolgreiche Produktregistrierung im DEHNmonitor PQ (www.dehn.de/powerquality-monitor) werden neben der Seriennummer auch die vier Ziffern hinter der Seriennummer benötigt.

Diese sind nur auf dem DEHNrecord SD selbst abgedruckt!

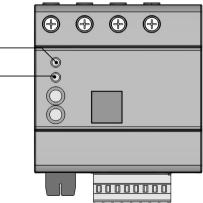
Beispiel: "0000" in "FHA12345678-0000"

9. Funktionsweise Seite 30 von 69

9.1 User-Interface


User-Interface – LEDs

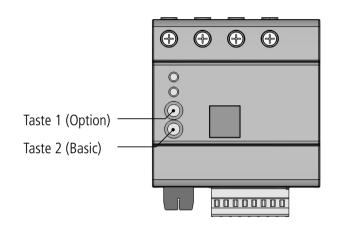
Die Anzeige am Gerät erfolgt durch zwei RGB-LEDs.


Diese unterscheiden sich auch durch Blinken und Dauerlicht.

Gleichzeitig aktive Betriebszustände werden durch LED 1 (Device) nacheinander angezeigt.

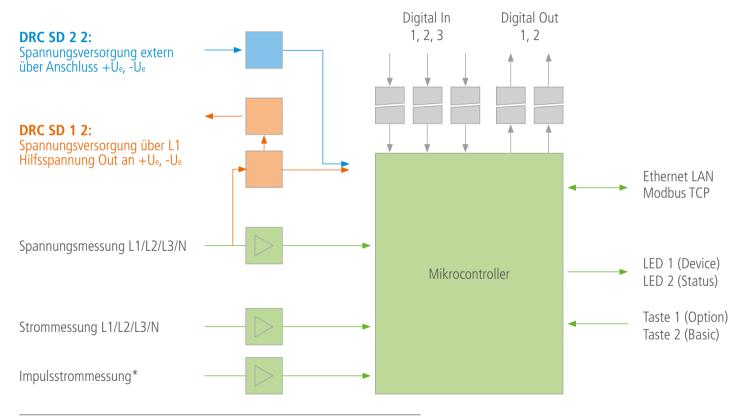
Anzeige bei Standardkonfiguration

Es können weitere Signale konfiguriert werden. Die Zuordnung der LED 2 (Status) zu einer Messfunktion erfolgt über die Geräte-Einstellungen.



9. Funktionsweise Seite 31 von 69

User-Interface – Tasten


Zur Bedienung am Gerät stehen zwei Tasten zur Verfügung. Diese sind nach Betätigungsdauer funktional unterschiedlich belegt.

Taste	Dauer	Funktion	
	kurz (<1 sec)	schnelle Datenübermittlung starten	
1 (Option)	lang (>5 sec)	Geräte Stopp/Start	
	lang (>10 sec)	Zurücksetzen auf Werkseinstellung	
2 (Basic)	kurz (<1 sec)	Webserver aktivieren	
	lang (>5 sec)	Geräte-Reset auslösen	

9. Funktionsweise Seite 32 von 69

9.2 Blockschaltbild

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

9.3 Messwerte

Das DEHNrecord SD erfasst Daten der Power Quality sowohl für kontinuierliche Messgrößen als auch für ereignisbezogene Messgrößen. Zudem stellt es auch Energie- und Leistungsdaten sowie den aktuellen Zustand der digitalen Ein- und Ausgänge zur Verfügung. Die folgende Auflistung stellt eine Übersicht der Messgrößen dar.

Eine detaillierte Liste mit Namen und Beschreibung der einzelnen Messgrößen findet sich in der Modbus-Anleitung.

Power Quality:

- Spannungshöhe
- Frequenz
- Flicker
- Spannungsunsymmetrie
- Spannungsharmonische
- Spannungszwischenharmonische
- Netzsignalspannungen
- Überhöhung, Einbruch, Unterbrechung der Spannung
- Schnelle Spannungsänderungen

Netzfrequente Überspannungen:

- Ereignisse nach EN 50550
- Indivuelle Einstellung: z.B. Unterspannung

Energie:

- Spannung
- Strom
- Wirkleistung
- Scheinleistung
- Blindleistung
- Wirkenergie
- Leistungsfaktor

Digital IO:

- Digitale Eingänge
- Digitale Ausgänge

9.4 Modbus

Eine detaillierte Anleitung für die Kommunikation mit dem DEHNrecord SD über Modbus TCP ist in der separaten Modbus-Anleitung zu finden. Sie enthält eine Auflistung und Beschreibung aller Modbus-Register und Messgrößen.

Die Datei ist verfügbar auf der Internetseite https://www.dehn.de/de/power-quality-im-niederspannungsnetz

Modbus TCP	
Betriebsart	TCP
Busteilnehmerrolle	Slave
Befehle	siehe Modbus-Anleitung

9.5 Kommunikation über das Netzwerk

Ports und Protokolle, die das DEHNrecord SD für die Kommunikation über das Netzwerk benutzt:

Interne Kommunikation

Port	Protokoll	Beschreibung/Beispiel	
53	DNS	Netzwerk-Name "DRC-SD-Seriennummer" auflösen	
80	HTTP	Kommunikation zum Webserver	
123	NTP	Zeit-Synchronisation	
502	Modbus	Modbus/TCP-Kommunikation	
67/68	DHCP	IP-Adresse über DHCP beziehen	
161	SNMP	Registrierung des Gerät z.B. im Windows Explorer, um von dort aus auf den Webserver zu gelangen	
	ICMP	für Ping-Befehl	

Externe Kommunikation

Port	Protokoll	Beschreibung/Beispiel	
443	HTTPS	Kommunikation zum Zielsystem (Azure, Cloud)	
8883	MQTT/TLS		

10.1 Geräte-Einstellungen Experten-Modus

Geräteeinstellungen können am Webserver des DEHNrecord SD selbst, per Modbus oder über die Cloud vorgenommen werden. Für eine einfache Bedienung sind einige, komplexere, Einstellmöglichkeiten standardmäßig ausgeblendet. Wird der Experten-Modus aktiviert, lassen sich alle Einstellmöglichkeiten anzeigen.

10.2 Allgemein

Neben einer Beschreibung lässt sich hier der Pfad für die Konfiguration von Power-Quality-Parametern festlegen.

Pfad für PQ-Konfiguration	Bemerkung	
Modbus	Grenzwerte lassen sich über den Modbus einstellen	
Cloud	Grenzwerte lassen sich über die Cloud einstellen	

10.3 Anzeige LED

Die Anzeige der LED 2 (Status) lässt sich individuell konfigurieren. Hierfür stehen folgende Möglichkeiten zur Auswahl:

Konfiguration LED 2 (Status)	grün	gelb	rot
PQ-Status Norm	OK	Ereignis aufgetreten	Verletzung eines Grenzwertes
PQ-Status Individual	OK	Ereignis aufgetreten	Verletzung eines Grenzwertes
POP-Anzeige	OK	Ereignis aufgetreten	-
Eingang 1			-
Eingang 2	"O"	"1"	-
Eingang 3			-
Aus	-	-	-

10.4 Digitale Eingänge, digitale Ausgänge und Logik

Digitale Eingänge

Für die drei digitalen Eingänge (Eingang 1, 2 und 3) lässt sich sowohl ein Event-Typ als auch ein Event-Trigger definieren.

Der Event-Typ beschreibt, in welcher Form und wann Ereignisse pro 10-Minuten-Intervall in eine Cloud übertragen werden:

Event-Typ	Übertragung
Aus	Kein Ereignis wird übertragen
Sofort-Ereignis	Nur das erste Ereignis wird sofort übertragen
Sammelereignis	Die Anzahl an Ereignissen werden am Ende des 10-Minuten-Intervalls übertragen

Der Event-Trigger definiert, auf welche Art von Signaländerung die Eingänge reagieren:

Event-Trigger	Eingang reagiert auf Signaländerung
Pegelwechsel	bei steigender und fallender Flanke
Steigende Flanke	bei steigender Flanke
Fallende Flanke	bei fallender Flanke

Digitale Ausgänge

Für die zwei digitalen Ausgänge lässt sich neben der Funktion auch eine Quelle und eine Aktiv-Zeit definieren.

Parameter

Die Funktion beschreibt das Verhalten des jeweiligen digitalen Ausgangs.

Parameter		Default-Wert		
Funktion	Aus	Schließer (NO)	Öffner (NC)	Aus

Die Aktiv-Zeit definiert, wie lange der Ausgang nach Auftreten eines Ereignisses in der ausgewählten Quelle aktiviert bleibt. Sobald innerhalb dieser Zeit ein weiteres Ereignis auftritt, wird das Zeitfenster neu gestartet.

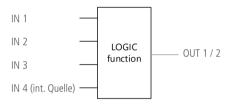
Parameter	Einstellbereich	Default-Wert
Aktiv-Zeit	100 2000 ms	1000 ms

Der digitale Ausgang reagiert auf verschiedene interne oder externe Ereignisquellen. Als Quelle stehen folgende Optionen zur Verfügung:

Quelle	Reaktion auf
Aus	-
Eingang 1	Ereignis am digitalen Eingang 1, Verhalten des Eingangs einstellbar
Eingang 2	Ereignis am digitalen Eingang 2, Verhalten des Eingangs einstellbar
Eingang 3	Ereignis am digitalen Eingang 3, Verhalten des Eingangs einstellbar
POP Funktion	Detektion einer netzfrequenten Überspannung oder individuell definierten Spannung (siehe Kapitel "netzfrequente Überspannungen (POP)")
PQ Norm	Verletzung eines PQ-Grenzwertes nach EN 50160
PQ Individual	Verletzung eines PQ-Grenzwertes nach individuellem Grenzwertsatz
Impuls	Verletzung eines Impuls-Grenzwertes*
Energie/Strom	Ereignisse, die durch die Strom- und Energiemessung bedingt sind (siehe Kapitel 10.6 Strommessung)
Gerät	Ereignisse, durch das DEHNrecord SD selbst erzeugt wie z.B. Cloud-Verbindung hergestellt oder Aktion durch Tastendruck am Gerät (Action 1, Action 2), Firmware-Update erfolgreich durchgeführt,
Cloud2Device	einen Befehl aus der Cloud gesteuert
Logik	digitaler Ausgang fungiert als Ausgang der LOGIK-Funktion

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

10. Geräte-Einstellungen Seite 40 von 69


Logik

Der interne Logik-Baustein umfasst vier Eingänge und einen Ausgang.

Diese können individuell konfiguriert werden und auch die Funktion des Logik-Bausteins ist einstellbar.

Eingang 1, 2 und 3 bezeichnen die digitalen Eingänge des DEHNrecord SD.

Eingang 4 repräsentiert eine interne Ereignis-Quelle.

Um den Ausgang 1 oder 2 mit der Logik zu verknüpfen ist unter der Einstellung für den jeweiligen Ausgang als Quelle "Logik" zu wählen.

Parameter	Werte		
Function	Aus, AND, OR, XOR, NOR, NAND, XNOR		
Eingang 1, 2 und 3 (Digitale Eingänge)	Aus, Normal, Invertiert		
Eingang 4 (interne Quelle)	Aus, POP, PQ Norm, PQ individual, Impuls*, Energie/Strom, Gerät		

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

10.5 Netzwerk

Netzwerk-Einstellungen können nur im Webserver des DEHNrecord SD vorgenommen werden. Gespeicherte Änderungen werden nach einem Neustart des Gerätes übernommen.

Für den bestimmungsgemäßen Gebrauch des DEHNrecord SD ist u.a. eine Verbindung zu einem Zeitserver (SNTP) nötig. Die hierfür benötigten Adressen und Ports dürfen im Netzwerk nicht blockiert werden. Die Ports sind in Kapitel 9.5 "Kommunikation über das Netzwerk" aufgelistet.

Parameter	Einstellbereich	Default-Wert
DHCP	EIN/AUS	AUS
DNS Server 1 (IP des DNS Servers für statische Einstellungen)		8.8.8.8
DNS Server 2 (IP des DNS Servers für statische Einstellungen)		1.1.1.1
Statische IP (wenn DHCP deaktiviert ist)	0.0.0.0 255.255.255.255	169.254.0.10
Statische IP Gateway (wenn DHCP deaktiviert ist)		0.0.0.0
Statische IP Netzmaske (wenn DHCP deaktiviert ist)		255.255.0.0
Zeitserver 1 (SNTP)		de.pool.ntp.org
Zeitserver 2 (SNTP)		ptbtime1.ptb.de
Zeitserver 3 (SNTP)		ptbtime2.ptb.de
Zeitserver 4 (SNTP)		ptbtime3.ptb.de
Gerätename (unter diesem Namen ist das Gerät im Netzwerk sichtbar, wenn DHCP aktiviert ist)	Nicht einstellbar	DRC-SD-FHAxxxxxxxx (FHAxx = Seriennummer)
MAC Adresse	Nicht einstellbar	Geräteabhängig
Timeout Webserver (Zeit in Sekunden, nachdem der Webserver deaktiviert wird)	120 3600 s	600 s

Cloud-Einstellungen (nur möglich im Webserver, Expertenmodus)

MQTT Server Adresse: dkg-sdc-prod-iothub-devices-01.azure-devices.net

MQTT Benutzername: dkg-sdc-prod-iothub-devices-01.azure-devices.net/FHAxxxxxxxx/?api-version=2019-10-01

FHAxxxxxxxx = Seriennummer des Gerätes

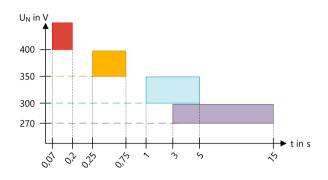
10.6 Netzfrequente Überspannungen nach EN 50550 - POP

Funktion

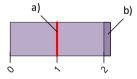
Das DEHNrecord SD erkennt netzfrequente Überspannungen wie sie in der Norm EN 50550 definiert sind.

Zusätzlich zu den vier von der Norm vorgegebenen Spannungs-Zeitfenstern lässt sich ein fünftes Erfassungs-Kriterium konfigurieren. Dieses kann auch zur Detektion einer Unterspannung genutzt werden.

Parameter für netzfrequente Überspannungen nach EN 50550


Selektivitätsfaktor

Mit diesem Faktor lässt sich der Zeitpunkt bestimmen, zu welchem der digitale Ausgang geschaltet wird wenn für diesen als Quelle "POP" eingestellt ist. Standardmäßig ist dieser auf 1 gesetzt, was der Hälfte des Spannungs-Zeit-Fensters abzüglich der Abschaltzeitreserve entspricht.


Abschaltzeitreserve

Diese Zeit dient als Reserve, die eine potentielle Schutzeinrichtung ab dem Erfassen eines Trigger-Signals zum Abschalten benötigt.

Parameter	Einstellbereich	Default-Wert	
Selektivitätsfaktor	0 2	1	
Abschaltzeitreserve	0 0,13 s	0,02 s	

Spannungs-Zeitfenster aus EN 50550, innerhalb deren eine POP-Hauptschutzeinrichtung auslösen muss.

Veranschaulichung des Selektivitätsfaktors a) sowie der Abschaltzeitreserve b)

Parameter für individuelles Erfassungskriterium

Individuelles Erfassungskriterium aktiv

Hiermit lässt sich das zusätzliche Kriterium für eine Netzfrequente Überspannung oder Unterspannung aktivieren. Der Selektivitätsfaktor sowie die Abschaltzeitreserve gelten für dieses Kriterium nicht.

Spannung

Individuelle Spannungsschwelle, bei welcher ein Ereignis ausgelöst wird.

Status/Richtung

Einstellung, ob beim Überschreiten oder Unterschreiten der Spannungsschwelle getriggert wird.

Dauer

Verzögerungs-Zeit, nach welcher bei Überschreiten oder Unterschreiten der Spannungsschwelle getriggert wird.

Individuelles Erfassungskriterium	Einstellbereich	Default-Wert
Spannung	2 440 V	325 V
Dauer	0,04 3600 s	1 s
Status/Richtung	Trigger bei Unter-/Überschreiten	Überschreiten

10. Geräte-Einstellungen Seite 45 von 69

10.7 Strommessung

Messgrößen

Über die jeweiligen Messkreise werden folgende Messgrößen erfasst:

Spannung U, Strom I, Wirkleistung P, Blindleistung Q, Scheinleistung S, Wirkenergie E, Frequenz f.

Basiswerte sind die Effektivwerte über 200 ms bzw. 10 s bei der Frequenz.

Daraus berechnen sich die weiteren Mittelwerte (3 s, 5 Min.).

Messintervalle

Für Daten, die in der Cloud oder per Modbus bereitgestellt werden, ist ein Messintervall von 5 Minuten definiert. Dieses Messintervall entspricht zugleich der Mittelungszeit, über die für jede Messgröße der Mittelwert gebildet wird.

Schnelle Datenübermittlung

Während der "schnellen Datenübermittlung" werden die 3-Sekunden-Mittelwerte Werte (10 s bei der Frequenz) in die Cloud übertragen. Dort können sie augenblicklich visualisiert werden und stehen für spätere Betrachtungen auch als Ereignis zur Verfügung.

Ereignisse

Für jede Phase einzeln, und unabhängig voneinander, kann ein Ereignistyp mit zugehörigem Grenzwert konfiguriert werden. Die folgenden Ereignistypen fallen unter die Ereigniskategorie En:

Ereignistyp	konfigurierbar für Strommesseingang		eingang	konfigurierbarer Grenzwertbereich	
	L1	L2	L3	N	
Strom	✓	1	1	✓	0,05 ln 2 ln
Wirkleistung	1	1	1	_	
Blindleistung	1	1	1	_	0,5 Un · 0.05 In 1,5 Un · 1.5 In
Scheinleistung	1	1	1	_	
Stromrichtungsumkehr	1	1	1	1	ohne
Nullstrom	1	1	1	1	0,005 ln 0,2 ln
Wirkleistung momentan	über 3 Phasen		_	0 999 999 kWh	
Wirkenergiezähler	ük	per 3 Phase	en	_	0 9 999 999 kWh

Wird ein Ereignis erkannt, d.h. der erfasste Messwert über- oder unterschreitet den zugehörigen Grenzwert bzw. erfüllt die zu Grunde liegende Bedingung, wird dieses Ereignis mit den entsprechenden Daten versehen (Ereignistyp und -kategorie, Zeitstempel, Kenngrößen (Messwert)) und in die Cloud zur Archivierung und Auswertung übertragen. Zudem steht es im entsprechenden Modbus-Register zum Abruf bereit.

Über die Konfiguration des Gerätes kann eine Ereigniskategorie der Status-LED und/oder einem der beiden digitalen Ausgängen und/oder zur Logikverküpfung der dig. Eingänge und/oder einem eMail-Benachrichtigungskanal zugewiesen werden. Das bedeutet, dass mit jedem Ereignis der Ausgabekanal entsprechend seiner Konfiguration aktualisiert/angeregt wird.

10.8 Netzsignalspannungen

Netzsignalspannungen werden vom Netzbetreiber genutzt, um über das Energienetz mittels Rundsteuersignalen zu kommunizieren. Diese unterscheiden sich regional. Für die korrekte Detektion dieser Signale sind hier globale Einstellungen (Rundsteuerfrequenz, Dauer und Triggerschwelle) vorzunehmen. Diese gelten sowohl für den Norm-Parametersatz nach EN 50160 als auch für den individuellen PQ Parametersatz.

Rundsteuerfrequenz

Frequenz des Rundsteuersignals, dessen 3-Sekunden-Mittelwert mit dem Grenzwert verglichen wird.

Dauer

Zeitraum, über den die Einhaltung des Grenzwertes überwacht wird.

Triggerschwelle

Bei Überschreiten startet die Dauer der Überwachung. Angabe als Abweichung in % der Nennspannung.

Einstellbereich und Default-Werte finden Sie im Kapitel "PQ-Konfiguration" auf Seite 51.

10.9 Zurücksetzen auf Werkseinstellungen

Um das Gerät auf Werkseinstellungen zurückzusetzen ist die Taste 1 (Option) für mindestens 10 Sekunden zu drücken.

Sobald beide LEDs erlöschen startet das DEHNrecord SD neu und übernimmt die Default-Werte.

Achtung: hierdurch werden auch die Netzwerkeinstellungen zurückgesetzt.

11. PQ Konfiguration Seite 48 von 69

Konfiguriert werden hier Grenzwerte und Parameter für die Auswertung der Spannungsqualität (Power Quality) nach individuellen Kriterien. Die PQ-Konfiguration erfolgt entweder per Modbus oder über die Cloud (= Standardeinstellung).

Der Pfad kann in den Geräte-Einstellungen unter Allgemein bei "Pfad für PQ-Konfiguration" geändert werden.

11.1 Allgemein

Beobachtungszeitraum

Über diesen Zeitraum wird der Status der Power Quality ausgewertet. Einstellbar sind ein Tag oder eine Woche.

Überwachungsstart

Kann auf fix (manuell einstellbare Startzeit) oder auf auto (nächstmögliche Startzeit) gestellt werden.

Markierte PQ-Messintervalle berücksichtigen

Messintervalle können nach dem in der EN 61000-4-30 beschriebenem Markierungskonzept markiert werden. Markierte Daten weisen darauf hin, dass diese unzuverlässig sein können. Dem Anwender ist es freigestellt, diese zu berücksichtigen oder nicht.

Zeiträume

Für verschiedene Power-Quality-Merkmale lassen sich Zeiträume innerhalb eines Beobachtungszeitraumes definieren, in denen die Grenzwerte eingehalten werden müssen. Die Angabe dieses Zeitraums erfolgt in % des gewählten Beobachtungszeitraums und definiert indirekt die zulässige Anzahl von Ereignissen innerhalb eines Beobachtungszeitraums.

11.2 Spannungshöhe

Die gemessene Spannungshöhe ist definiert durch den Effektivwert der Spannung zwischen Außen- und Neutralleiter (bzw. Außen- und PEN-Leiter). Er wird über ein Zeitfenster von 10 Minuten gemittelt.

Grenzwerte

Es stehen zwei Grenzwertsätze zur Verfügung. Für jeden gibt es neben einem Minimum und Maximum auch einen Zeitraum, in dem die Grenzen eingehalten werden müssen bevor es zur Verletzung kommt. Die Angabe des Zeitraums erfolgt in % des gewählten Beobachtungszeitraums.

11. PQ Konfiguration Seite 49 von 69

11.3 Frequenz

Die Frequenz der Netzspannung wird jeweils über ein Zeitfenster von 10 Sekunden ermittelt.

Grenzwerte

Es stehen zwei Grenzwertsätze zur Verfügung.

Für jeden gibt es neben einem Minimum und Maximum auch einen Zeitraum, in dem die Grenzen eingehalten werden müssen bevor es zur Verletzung kommt.

Die Angabe des Zeitraums erfolgt in % des gewählten Beobachtungszeitraums und die des Minimums und Maximums in Abweichung vom Nennwert.

11.4 Flicker

Flicker ist visuell wahrnehmbare Änderung der Leuchtstärke von Lichtquellen.

Es wird unterschieden in für Kurzzeit-Flicker Pst (10-Minuten-Wert) und Langzeit-Flicker Ptt (2-Stunden-Wert).

Grenzwerte

Für Kurz- und Langzeit-Flicker können Grenzwerte definiert werden.

Zudem lässt sich ein Zeitraum definieren, in dem die Grenzen eingehalten werden müssen bevor es zu einer Verletzung kommt.

Die Angabe des Zeitraums erfolgt in % des gewählten Beobachtungszeitraums.

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

11. PQ Konfiguration Seite 50 von 69

11.5 Einbruch, Überhöhung, Unterbrechung der Spannung

Für die Erfassung dieser Merkmale werden sogenannte Halbperioden-Effektivwerte gemessen.

Der Effektivwert der Spannung wird wird über eine gesamte Periode gebildet und nach jeder halben Periode aktualisiert.

Dieses Verfahren kombiniert die Genauigkeit einer Ganzperiodenmessung und die Schnelligkeit der Halbperiodenmessung.

11.6 Einbruch

Sobald die Spannung unter einen definierten Schwellenwert sinkt, wird dies als Spannungseinbruch gewertet.

Grenzwerte

Neben dem Schwellenwert lässt sich auch eine Hysterese individuell konfigurieren.

Einbrüche werden nach der Tabelle 2 nach EN 50160 kategorisiert und für jede einzelne Kategorie kann zudem eine erlaubte Anzahl an Einbrüchen definiert werden, bevor es als Verletzung gewertet wird.

Zudem gibt es ein Feld für nicht über die Tabelle abgedekte Kategorien.

11.7 Überhöhung

Überschreitet die Spannung einen definierten Schwellenwert, wird eine Spannungsüberhöhung detektiert.

Grenzwerte

Neben dem Schwellenwert lässt sich auch eine Hysterese individuell konfigurieren.

Überhöhungen der Spannung werden nach der Tabelle 3 nach EN 50160 kategorisiert und für jede einzelne Kategorie kann zudem eine erlaubte Anzahl an Überhöhungen definiert werden, bevor es als Verletzung gewertet wird.

Zudem gibt es ein Feld für nicht über die Tabelle abgedeckte Kategorien.

11. PQ Konfiguration Seite 51 von 69

11.8 Unterbrechung

Eine Unterberchung der Spannung wird erkannt, sobald sie auf allen Phasen einen gewissen Schwellenwert unterschreitet.

Grenzwerte

Neben dem Schwellenwert lässt sich auch eine Hysterese individuell konfigurieren. Zusätzlich kann eine Zeit-Dauer definiert werden, bei der eine Unterbrechung entweder als kurze und lange Unterbrechung kategorisiert wird. Es kann zudem je Kategorie eine erlaubte Anzahl an Unterbrechungen definiert werden, bevor es als Verletzung gewertet wird.

11.9 Unsymmetrie

Die Unsymmetrie eines dreiphasigen Systems wird mithilfe der Symmetrischen Komponenten durch die Größe uz dargestellt. Diese repräsentiert das Verhältnis der Gegensystem-Komponente zur Mitsystem-Komponente in Prozent.

Grenzwerte

Neben dem erlaubten Maximum lässt sich ein Zeitraum definieren, in dem die Grenzen eingehalten werden müssen bevor es zu einer Verletzung kommt.

11. PQ Konfiguration Seite 52 von 69

11.10 Gesamtverzerrung THD, Harmonische, Zwischenharmonische

Die Verzerrung der Netzspannung wird mithilfe von Harmonischen (Oberschwingungen) und Zwischenharmonischen beschrieben.

Harmonische Spannungen sind ganzzahlige Vielfache der Grundschwingung und sind gekennzeichnet durch eine Ordnung h --> z.B. Uh3 für die Oberschwingung dritter Ordnung (im 50-Hz-Netz wären das 150 Hz).

Zwischenharmonsiche Spannungen sind nicht-ganzzahlige Vielfache der Grundschwingung.

Die Gesamtverzerrung THD (auch als Klirrfaktor bekannt) berechnet sich, vereinfacht ausgedrückt, aus der Summe des Quadratischen Mittels der Verhältnisse von Oberschwingung zu Grundschwingung bis zu einer gewissen Ordnung h.

Grenzwerte

Neben dem erlaubten Maximum für jede einzelne Harmonische und Zwischenharmonische Spannung lässt sich ein Zeitraum definieren, in dem die Grenzen eingehalten werden müssen bevor es zu einer Verletzung kommt.

Das Maximum ist als %-Wert zum Effektivwert der Grundschwingung (50 Hz) angegeben.

Zudem ist die höchste Ordnung, bis zu welcher die einzelnen Harmonischen in die Berechnung des THD einfließen, definierbar.

11.11 Netzsignalspannungen

Energieversorgungsunternehmen nutzen oftmals ihr Netz zu Kommunikationszwecken.

Hierfür werden Netzsignalspannungen, sogenannte Rundsteuersignale, verwendet.

Die Rundsteuerfrequenz bezeichnet die Trägerfrequenz des aufmodulierten Signals.

Parameter

Neben der Rundsteuerfrequenz selbst sind die Dauer sowie Triggerschwelle, ab dem eine Netzsignalspannung erkannt wird, individuell einstellbar. Die Dauer beschreibt das Zeitfenster, in dem ab Überschreitung der Triggerschwelle überwacht wird.

Diese Parameter werden unter den Geräte-Einstellungen definiert, da sie sowohl für den Norm- als auch für den individuellen Grenzwert gelten.

11. PQ Konfiguration Seite 53 von 69

Grenzwerte

Für die Auswertung lässt sich sowohl ein Grenzwert als auch ein Zeitraum definieren, in dem der Grenzwert eingehalten werden muss bevor es zu einer Verletzung kommt.

Der maximale Pegel einer Netzsignalspannung ist abhängig von der gewählten Rundsteuerfrequenz.

Der Grenzwert Max. dieser Spannung generiert sich automatisch anhand der Vorgaben der EN 50160 Bild 1.

11.12 Schnelle Spannungsänderungen

Um eine schnelle Spannungsänderung handelt es sich, wenn sich die Spannungshöhe über einen gewissen Zeitraum auf einem nahezu gleichbleibenden Niveau befindet und plötzlich eine Spannungsänderung auftritt, die von diesem Niveau signifikant abweicht.

Grenzwerte

Das Spannungsänderungs-Level definiert die Grenze, ab welcher Höhe die Abweichung vom gleichbleibenden Niveau als schnelle Spannungsänderung gewertet wird.

Die Angabe dieses Grenzwertes erfolgt in % der Nennspannung.

Zudem lässt sich eine Hysterese für diesen Wert definieren und eine zulässige Anzahl von schnellen Spannungsänderungen im gewählten Beobachtungszeitraum.

Zusätzlich ist ein Minimum und ein Maximum zu definieren, ab dessen Unter- bzw. Überschreitung, die schnelle Spannungsänderung als Einbruch oder Überhöhung gewertet wird. Diese Werte sind identisch mit den Schwellenwerten letzterer.

11. PQ Konfiguration Seite 54 von 69

11.13 Werte für PQ-Merkmale

PQ-Merkmal	Parameter	Einstellbereich	Default-Wert (EN 50160)
	Zeitraum 1	0 100 %	95 %
	Max. 1	+0,1 +25 %	+10 %
Snannungshäha	Min. 1	-250,1 %	- 10 %
Spannungshöhe	Zeitraum 2	0 100 %	100 %
	Max. 2	+0,1 +25 %	+10 %
	Min. 2	-250,1 %	- 15 %
	Zeitraum 1	0 100 %	99,5 %
	Max. 1	+0,1 +25 %	+1 %
Fraguenz	Min. 1	-250,1 %	-1 %
Frequenz	Zeitraum 2	0 100 %	100 %
	Max. 2	+0,1 +25 %	+4 %
	Min. 2	-250,1 %	-6 %
Langzait Flicker	Zeitraum	0 100 %	95 %
Langzeit-Flicker	Max.	0,2 10	1,0
Kurzzeit-Flicker	Zeitraum	0 100 %	-
NUI ZZEIL-FIICKEI	Max.	0,2 10	-

11. PQ Konfiguration Seite 55 von 69

PQ-Merkmal	Parameter	Einstellbereich	Default-Wert (EN 50160)
	Anzahl	0 1000	-
Spannungseinbruch	Schwellenwert	-501 %	-10 %
	Anzahl Schwellenwert Hysterese Anzahl Schwellenwert Hysterese Anzahl Schwellenwert Hysterese Dauer (Kurz-/Langzeit) Zeitraum Max. Zeitraum Max.	0 10 %	2 %
	Anzahl	0 1000	-
Spannungsüberhöhung	Schwellenwert	50 1 %	10 %
	Hysterese	0 10 %	2 %
	Anzahl	0 1000	-
Channingsuntarbrashing	Schwellenwert	1 10 %	5 %
Spannungsunterbrechung	Hysterese	0 10 %	2 %
	Dauer (Kurz-/Langzeit)	1 600 s	180 s
Uncummatria	Zeitraum	0 100 %	95 %
Unsymmetrie	Max.	0,5 5 %	2,0 %
	Zeitraum	0 100 %	100 %
THD	Max.	0,1 20 %	8 %
THE	Ordnung h Bis zu dieser Ordnung werden die einzelnen Spannungsharmonischen für die Berechnung des THD berücksichtigt.	0 50	40

PQ-Merkmal	Parameter	Einstellbereich	Default-Wert (EN 50160)
Channungcharmoniccha	Zeitraum (gültig für alle Ordn.)	0 100 %	95 %
Spannungsharmonische	Max.	0 20 %	siehe Tabelle H
Channungezwischanharmanischa	Zeitraum (gültig für alle Ordn.)	0 100 %	-
Spannungszwischenharmonische	Max.	0 20 %	-
	Zeitraum	0 100 %	99 %
	Max.	0 10 %	nach EN 50160
Netzsignalspannungen	Rundsteuerfrequenz (unter Geräteeinstellungen zu definieren)	100 3000 Hz	175 Hz
	Aufzeichnungsdauer (unter Geräteeinstellungen zu definieren)	3 120 s	120 s
	Triggerschwelle (unter Geräteeinstellungen zu definieren)	0,3 4,9 %	4,5 %
	Anzahl	0 1000	-
	Level	1 6 %	5 %
Schnelle Spannungsänderungen	Hysterese	0,5 3 %	2,5 %
Spannangsanaerungen	Min. (= Schwellenwert bei Spannungseinbruch)	-501 %	-10 %
	Max. (= Schwellenwert bei Spannungsüberhöhung)	1 50 %	10 %

Tabelle H: Grenzwerte für einzelne Spannungsharmonische

Ordn. h	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Max. in %	2,0	5,0	1,0	6,0	0,5	5,0	0,5	1,5	0,5	3,5	0,5	3,0	0,5	1,0	0,5	2,0	0,5	1,5	0,5	0,75	0,5	1,5	0,5	1,5

12. Technische Daten Seite 57 von 69

Spannungsversorgung	DRC SD 1 1 (ArtNr. 910 920)	DRC SD 2 1 (ArtNr. 910 921)
Spannungsversorgung	230 V _{AC} (über L1 und N)	24 Vpc SELV (II)
Eingangsspannungsbereich	185 - 265 Vac, 47 - 53 Hz	18 - 30 Vpc
Stromaufnahme	30 mA (max.)	100 mA (max.)
Leistungsaufnahme	8 W (max.)	3 W (max.)
Maximal zulässige Eingangsspannung im Fehlerfall (bei getrenntem Neutralleiter)	400 Vac	
Versorgungsspannungspufferung bei Netzausfall	min. 5 Sekunden	abhängig von Spannungsquelle
Versorgungsspannungspufferung bei Spannungseinbruch bis 70 %	min. 60 Sekunden	abhängig von Spannungsquelle
Erlaubte Überspannung	463 V _{AC} für 5 Sekunden	

12. Technische Daten Seite 58 von 69

Messeingänge L1/L2/L3/N	
Nenneingangsspannung	230/400 Vac
Isolation: Anschlüsse zu digitalen Ein-/Ausgängen und zu DC in/out	galvanisch getrennt
Anschlusskabel	1,5 mm ² - 6 mm ² (fein-/mehrdrähtig), 10 mm ² (eindrähtig)
Vorsicherung	Passend zur Anschlussleitung, z.B. bei 1,5 mm² -> B 16A
Vorsicherung in Kombination mit einem SPD	Die Vorgaben des jeweiligen SPDs sind zu beachten

Analoge Eingänge	
Impulsmessung (1x)	Impulsstromsensor DRC SD ICS zur Erfassung von Stoßströmen bis 100 kA
Spannungsmessung (3x)	Erfassung der AC-Netzspannung aller drei Phasen
Strommessung (4x)	Rogowski-Spulen bzw. Stromwandler zur Erfassung von AC-Netzströmen aller drei Phasen sowie Neutralleiter

12. Technische Daten Seite 59 von 69

Schnittstellen	
Ethernet (1x RJ45)	Abfrage und Konfiguration durch ext. Steuerungen (Modbus TCP, Slave), Cloudanbindung, Kommunikation mit internem Webserver
Digitale Eingänge (3x)	Erfassung von digitalen Signalen Nennspannung 24 Vpc, max. 30 Vpc; Ein > 8,5 V; Aus < 7,35 V
Digitale Ausgänge (2x)	Ausgabe eines digitalen Signals mittels potentialfreiem Kontakt (max. 24 Vbc, max. 0,5 A, max. 0,25 W)

Benutzerschnittstellen	
Taster (2x)	Bedienung während des Betriebs
LEDs (2x RGB)	Anzeige verschiedener Zustände

Normen	
Sicherheit (MSRL)	EN 61010-1: 2010 + Cor. 2011 EN 61010-2-030: 2010 + Cor. 2011
EMV (MSRL, Industrie, Kraftwerke)	EN 61326-1: 2013 EN 61000-6-5: 2015 + AC: 2018
Spannungsqualität (Geräte/Merkmale)	EN 62586-1: 2017 EN 61000-4-30: 2015 EN 50160: 2010 + Cor. 2010 + A1: 2015
Netzfrequente Überspannung / POP	EN 50550: 2011 + AC: 2012 + A1: 2014

12. Technische Daten Seite 60 von 69

Gerät allgemein	DRC SD 1 1 (ArtNr. 910 920)	DRC SD 2 1 (ArtNr. 910 921)			
Abmessungen B x H x T	90 (5 TE) x 90 x 65 mm				
Gewicht	400 g (500 g inkl. Verpackung 335 g (435 g inkl. Verpackur				
Gehäuse – Werkstoff	PA 12, grau				
Gehäuse – Schlagfestigkeit	IK 06				
Einbauort	Innenraum				
Montageart	DIN-Schiene (für REG) in Haupt- oder Unterverteilung, Betrieb mit Schalttafelabdeckung				
Anschluss Versorgung/Netzspannungsmessung	Kammschiene 2-pol./4-pol., Einzeladern 2-pol./4-pol.				
Schutzart	IP20				

Kombinationsmöglichkeiten	
Mit SPD (Produktfamilie), direkt mit Kammschiene	DEHNventil, DEHNshield, DEHNguard, DEHNbloc modular
Mit SPD (Produktfamilie), frei verdrahtet	DEHNvenCI, DEHNbloc Maxi, DEHNrail

12. Technische Daten Seite 61 von 69

Umgebungsbedingungen (definiert für die Geräteklasse PQI-A-FI1 nach DIN EN 62586-1)						
Umgebungstemperatur: Lagerung und Transport	-40 °C bis +70 °C					
Umgebungstemperatur: Nennbetriebsbereich	-10 °C bis +45 °C					
Umgebungstemperatur: Grenzbetriebsbereich	-25 °C bis +55 °C					
Relative Luftfeuchte: 24-h-Durchschnitt	Lagerung und Transport: von 5 % bis 95 % Betrieb in Innenräumen: von 5 % bis 95 % Anmerkung: Keine Kondensation, kein Eis					
Verschmutzung durch Staub, Salz, Rauch, korrosives/brennbares Gas, Dämpfe	keine signifikante Verschmutzung					
Schwingungen, Erdstöße	IEC 60721-3-1, IEC 60721-3-2, IEC 60721-3-3					
Elektromagnetische Störfestigkeit	DIN EN 61000-6-5:2016-07					
Betriebshöhe	max. 2000 m über NN					
Verschmutzungsgrad	2					
Überspannungskategorie (bezogen auf die Netzversorgungsspannung)	III, zusammen mit SPD: IV					
Messkategorie	300 V CAT III, zusammen mit SPD: 300 V CAT IV					

12. Technische Daten Seite 62 von 69

Spannungsmesseingänge	
Anschluss an TT- und TN-S-System	L1, L2, L3, N
Anschluss an TN-C-System	L1, L2, L3, PEN
Anschluss an IT-System	keine Verwendung möglich
Anschlussquerschnitt	1,5 - 6 mm² fein-/mehrdrähtig 1,5 - 10 mm² eindrähtig
Kammschiene	Kupfer, 16 mm², Kammlänge ≥ 15,5 mm, Austritt oben
Kammschiene, zur Verwendung mit DEHNshield, DEHNguard (4TE)	MVS 4 8 11, 910 814
Kammschiene, zur Verwendung mit DEHNventil, DEHNbloc modular (8TE)	MVS 4 56, 910 614
Parallelanschluss Kammschiene und Leitung	möglich
Eingangsspannung Lx – N	230 Veff, 50 Hz, max. 300 Veff
Bemessungsspannung/Messkategorie	300 V CAT III
Bemessungsspannung/Messkategorie zusammen mit SPD ($U_P \leq 2,5 \text{ kV}$)	300 V CAT IV

Detektion netzfrequenter Überspannungen	
Grenzwerte	nach EN 50550
Bewertete Spannungen	L1 - N, L2 - N, L3 - N
Charakteristik für digitales Ausgangssignal	> 275 V / 3 15 s; > 300 V / 1 5 s; > 350 V / 0,25 0,75 s; > 400 V / 0,02 0,07 s; individuell 2 440 V / 0,04 3600 s

12. Technische Daten Seite 63 von 69

Strommesseingänge für ausgewiesene, externe Klappkernwandler oder Rogowski-Spulen	
Anzahl	4
Anschlussquerschnitt	0,08 - 2,5 mm² eindrähtig 0,25 - 1,5 mm² mit Aderendhülse
Parametrierung	über Webserver, Cloud oder Modbus
Isolation Strommesseingang	keine galvanische Trennung

12. Technische Daten Seite 64 von 69

Stromsensoren – Klappkernwandler, DRC SD SCS 100 (ArtNr. 910 936)		
Messbereich	0 - 100 A (120 A Maximum), 50 Hz	
Bandbreite	1,5 kHz	
Genauigkeitsklasse	Klasse 1 nach IEC 61869-2	
Ringdurchmesser innen	16 mm	
Abmessung (B x T x H)	40,8 x 33,2 x 56,1 mm	
Anschlusskabellänge	1 m	
Befestigung am zu messenden Leiter	mit 2 Kabelbindern	
Gewicht	120 g	
Sicherheit/Isolation, Berührbarkeit Sensoren	300 V CAT III	
Sicherheit/Isolation, zum stromführenden Leiter	300 V CAT III	

Stromsensoren – Rogowski-Spule, teilbar, flexibel, DRC SD RCS 1000 (ArtNr. 910 937)		
Messbereich	0 - 1000 A (2000 A Maximum), 50 Hz	
Bandbreite	50 kHz	
Ringdurchmesser innen	150 mm	
Abmessung	Ø 10 mm	
Anschlusskabellänge	3 m (alternativ 1 m)	
Gewicht	250 g	
Sicherheit/Isolation, Berührbarkeit Sensoren	300 V CAT III	
Sicherheit/Isolation, zum stromführenden Leiter	1000 V CAT III bzw. 600 V CAT IV	

12. Technische Daten Seite 65 von 69

Impulsstrommesseingang für ausgewiesene, externe Impulsstromsensoren*			
Anzahl	1		
Anschlussquerschnitt	0,08 - 2,5 mm² eindrähtig 0,25 -1,5 mm² mit Aderendhülse		
Anschlusstyp	push-in		
Messbereich	0 100 kA		
Auflösung Spannungshöhe	100 A		
Abtastrate	1 μs		
Kurvenform	8/20 - 10/350 μs		
Aufzeichnungslänge	max. 500 ms		
Impulswerte (berechnet)	I _{peak} , Q _{ges} , T _r , T _w , Kategorie-Dauer		
Triggerschwelle Spannungshöhe	parametrierbar über internen Webserver oder über die Cloud		

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

12. Technische Daten Seite 66 von 69

Impulsstromsensor – DRC SD ICS 100 (ArtNr. 910 935)*		
Erfassungsbereich I _{peak}	50 kA, Kurvenform 8/20 - 10/350 μs	
Bandbreite	50 kHz	
Befestigung am zu messenden Leiter	mit 2 Kabelbindern (im Lieferumfang)	
Abmessung (B x T x H)	23 x 30 x 75 mm	
Anschlusskabellänge	3 m (inkl. Befestigung und Knickschutz)	
Gewicht	25 g	
Sicherheit/Isolation, Berührbarkeit Sensoren	300 V CAT III	

Die Montage darf nur auf isolierten, nicht gefährlich aktiven Leitern erfolgen.

^{*} Variante mit Impulsstrommessung verfügbar voraussichtlich ab Q4 - 2021

12. Technische Daten Seite 67 von 69

Digitale Ausgänge (2 Stück)	
Тур	PhotoMOS-Relais, bidirektional
Spannung max.	30 V
Strom max.	500 mA
Leistung max.	500 mW
Einschaltwiderstand max.	150 mΩ
Polarität	beliebig
Isolation: Anschlüsse zu Spannungsmesseingängen	300 V CAT III
Isolation: Anschlüsse zu anderen digitalen Eingängen	galvanisch getrennt
Isolation: Anschlüsse zu externer DC-Versorgung	100 V

Digitale Eingänge (3 Stück)		
Тур	multifunktional	
Spannung	Nennspannung 24 Vpc, max. 30 Vpc; Ein $> 8,5$ V; Aus $< 7,35$ V	
Stromaufnahme	max. 10 mA	
Polarität	ist zu beachten	
Isolation: Anschlüsse zu Spannungsmesseingängen	300 V CAT III	
Isolation: Anschlüsse zu anderen digitalen Ausgängen	galvanisch getrennt	
Isolation: Anschlüsse zu externer DC-Versorgung	100 V	

12. Technische Daten Seite 68 von 69

Messung Spannungsqualität		
Messverfahren	EN 61000-4-30:2015, Klasse A	
Auswertung	EN 50160:2010 + Cor. 2010 + A1:2015 bzw. individuell parametrierbar	
Messung	3-phasig (L1, L2, L3, N/PEN)	
Nennwert Spannung/Frequenz	230 Veff / 50 Hz	

Messung Spannungsqualität	Messbereich	Messgenauigkeit/-verfahren
Spannungshöhe	10 - 150 % von U _N	± 0,1 % von U _N
Frequenz	± 15 % von f _N	± 10 mHz
Flicker	0,2 - 10 Pst	EN 61000-4-15
Einbrüche, Überhöhung	10 - 150 % von U _N	0,2 % von U _N , ± 1 Periode
Unterbrechungen	< 10 % von U _N	
Unsymmetrie	0,5 - 5 % von u ₂ und u ₀	0,15 %
Oberschwingungen, Zwischenharmonische	Ordnung 2 50.	EN 61000-4-7 (Klasse I)
Netzsignalspannung	0 - 15 % von U _N	EN 61000-4-30
Schnelle Spannungsänderungen	± 1 % von UN bis Einbruch/Überhöhung	0,2 % von U _N

13. Wartung Seite 69 von 69

Die Wartung des Gerätes wird spätestens 5 Jahre ab Übergabe und danach regelmäßig spätestens alle 5 Jahren nach der jeweils letzten Wartung empfohlen.

Sollten sich die Messergebnisse vor dem Erreichen eines Wartungszeitpunktes dauerhaft verschlechtern, wird eine vorgezogene Wartung des Gerätes nahe gelegt.

13.1 Prüfung

Eine Prüfung könnte z.B. durch eine Parallelmessung mit einem Referenzgerät erfolgen.

Gründe für eine vorzeitige Wartung können u.a. sein:

- · Das Gerät war längere Zeit Temperaturen außerhalb des Toleranzbereichs ausgesetzt.
- · Häufige und außerordentliche EMV-Phänomene

Bitte beachten:

Der Grund für eine dauerhafte Verschlechterung der Messergebnisse kann allein in der tatsächlichen Verschlechterung der Netzqualität liegen, ohne dass eine vorzeitige Wartung erforderlich ist.

13. Wartung Seite 70 von 69

13.2 Reinigung

Im angeschlossenen Zustand darf das Gerät nicht gereinigt werden.

Im nicht angeschlossenen Zustand kann das Gerät mit einem mit Wasser angfeuchteten Tuch gereinigt werden. Es darf keine Flüssigkeit in das Gerät eindringen.

13.3 Demontage

WARNUNG

Gefahr durch Stromschlag

Die Demontage eines DEHNrecord SmartDevice darf nur durch eine Elektrofachkraft erfolgen!

13.4 Entsorgung

Das Gerät darf nicht über den Hausmüll entsorgt werden!

Weiterführende Informationen entnehmen Sie unserer Homepage: www.dehn.de

DEHNrecord SD

Multifunctional measurement and analysis device for monitoring power quality

Manual

Imprint Page 2 from 69

Manufacturer

DEHN SE + Co KG Hans-Dehn-Str. 1 92306 Neumarkt Germany

Tel. +49 9181 906-0 www.dehn.de

Service Hotline – Technical Support

Tel. +49 9181 906-1750 technik.support@dehn.de Table of contents Page 3 from 69

lm	print	2
	Manufacturer Service Hotline — Technical Support	2
1.	Terms and abbreviations	6
2.	Safety 2.1 Intended use	7 7
3.	Scope of delivery 3.1 Accessories (optional)	8
4.	Service description 4.1 Measuring the power quality according to EN 61000-4-30, class A 4.2 Additional measurement capabilities 4.3 Device variants 4.4 Measurement locations, measurement tasks 4.5 Measured values – recording 4.6 Measured values – evaluation of power quality (PQ) 4.7 Measurement site concept 4.8 Configuration 4.9 Events and output channels	9 10 10 11 11 12 13 14 16
5.	Device description	18
6.	Mounting 6.1 Mounting as a single device 6.2 Mounting with surge protective device and busbar 6.3 Use with overvoltage category IV	20 20 21 22

Table of contents Page 4 from 69

7.	Conr	nection	24
	7.1	Connection DRC SD 1 1 – Part No. 910 920	24
		Connection DRC SD 2 1 – Part No. 910 921	25
		Impulse current sensor DRC SD ICS (Part No. 910 935) *	26
	7.4	Current sensors	27
8.	Com	missioning	28
	8.1	Step 1 – Apply the voltage	28
		Step 2 – Connection to the web server	28
	8.4	Step 3 – Check	28 29
		Step 4 – Configuration	29
9.		tionality	30
		User interface	30
		Block diagram	32
		Measured values Modbus	33 34
		Communication via the network	35
10			
10		ce settings	36
		Device settings expert mode General	36 36
		LED indicator	36
		Digital inputs, digital outputs and logic	37
		Network	41
	10.6	Power frequency overvoltages according to EN 50550 - POP	43
		Current measurement	45
		Mains signalling voltages	47
	10.9	Factory reset	47

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

Table of contents Page 5 from 69

11. PQ Configuration	48
11.1 General	48
11.2 Voltage magnitude	48
11.3 Frequency	49
11.4 Flicker	49
11.5 Voltage dip, voltage swell, voltage interruption	50
11.6 Voltage dip	50
11.7 Voltage swell	50
11.8 Voltage interruption	51
11.9 Unbalance	51
11.10 Total harmonic distortion THD, harmonics, interharmonics	52
11.11 Mains signalling voltages	52
11.12 Rapid voltage changes	53
11.13 Values for PQ characteristics	54
12. Technical data	57
13. Maintenance	69
13.1 Check	69
13.2 Cleaning	70
13.3 Dismantling	70
13.4 Disposal	70

1. Terms and abbreviations Page 6 from 69

PQ Power Quality DRC SD DEHNrecord SD

SPD Surge Protective Device

POP Power frequency overvoltage protective device

UTC Coordinated Universal Time

MSRL Equipment for measurement, control, and laboratory use according to EN 61010-1

PLC Programmable logic controller

2. Safety Page 7 from 69

WARNING Risk of electric shock

Installation and connection of a DEHNrecord SD may only be carried out by a qualified electrician in accordance with the installation standards of the country.

Before mounting, check the DEHNrecord SD (DRC SD) and the accessories for external damage.

If any damage or other defect is detected, do not mount the DRC SD.

Loads exceeding the specified values may destroy the DRC SD and the electrical equipment connected to it.

Tampering with and modifying the DRC SD will void the warranty.

If the DRC SD is used together with a surge protective device (SPD) in environments with overvoltage category IV, make sure that the SPD is functional before accessing the device.

If the SPD indicates a defect, the SPD must first be repaired before the DRC SD can be accessed.

The installation instructions for the SPD must be observed for this purpose.

2.1 Intended use

The DRC SD is permitted for use in the control cabinet and only within the conditions specified in this manual.

If the device is used in a manner not specified, the protection supported by the device may be impaired.

Only approved accessories may be used.

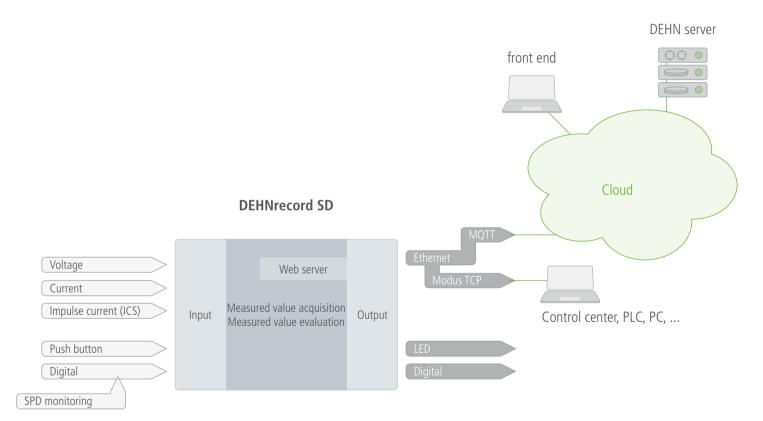
An external time signal from a time server is required for synchronization (see chapter 9.5 Communication via the network)

3. Scope of delivery Page 8 from 69

DEHNrecord SD *
Connector IO
Connector CM
Installation instructions

3.1 Accessories (optional)

Impulse current sensor DRC SD ICS 100, Part No. 910 935 * Split core current sensors, Part No. 910 936 Current sensors (Rogowski coils), Part No. 910 937 Busbar (suitable for surge protective device) for use in combination with a surge protective device (SPD)



Impulse current sensor DRC SD ICS

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

4. Service description Page 9 from 69

Schematic overview of functions

4. Service description Page 10 from 69

4.1 Measuring the power quality according to EN 61000-4-30, class A

Monitored are: Voltage magnitude, frequency, flicker, voltage dips, voltage swells, interruption, unbalance, harmonics, interharmonics, mains signalling voltages, rapid voltage changes.

Measurement/recording	Analysis and evaluation
Power quality according to EN 61000-4-30:2015, class A	According to standard EN 50160 and at the same time according to individual specifications

4.2 Additional measurement capabilities

Measurement/recording	Analysis and evaluation
Impulse current 8/20 μs and 10/350 μs to 100 kA *	By maximum, duration, rise time, and single/sum charge.
Current, power, energy via up to 4 current sensors (Rogowski coils or split core current transformers)	Limit values for current, power (P, Q, S), current direction, zero current and energy (global) can be parameterized separately for each phase or the neutral conductor
Power frequency overvoltages (POP)	According to standard EN 50550 and also individually with differentiation exceedance/undershot
Digital states at 3 inputs	According to state/change with counter function. After status / change with counter function. The inputs can be logically linked to one another and to other device functions.

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

4. Service description Page 11 from 69

4.3 Device variants

DRC SD 1 1, Part No. 910 920: Power supply 230 volts via L1 of the measuring voltage.

The device can bridge supply interruptions for up to 5 seconds.

DRC SD 2 1, Part No. 910 921: Power supply 24 volts DC external.

Records interruptions and voltage dips even over 5 seconds in accordance with EN 61000-4-30,

class A if the external power supply is uninterruptible.

4.4 Measurement locations, measurement tasks

Energy supplier

Power quality (monitoring, evaluation) energy consumption, load profile

Energy consumer

Energy measurement and monitoring Power quality (monitoring, analysis)

Installation location

Local network stations, cable distribution cabinets, measuring transducer cabinets, transfer points to customer facility, main distributions, sub-distributions, terminal device level. For a normative evaluation of the power quality according to EN 50160, the preferred installation location is the transfer point from supplier to consumer.

4. Service description Page 12 from 69

4.5 Measured values – recording

Cyclic measurement (SoL – sign-of-life-data)

Measured values are transmitted cyclically to the cloud and are available there for graphical display in the grid of observation periods (1 week).

For evaluation and transmission, the measured values are calculated to 5-minute intervals (current, power, energy) or 10-minute intervals (PQ) UTC time-synchronously.

Event-based

An event is generated when a parameterized limit value is violated. The device transfers the determined characteristic values and detailed event data to the cloud.

This reduces the scope of measured values obtained to the relevant data.

This can be done from all measurement functions. In conjunction with the high-resolution temporal detailed data, this function provides a detailed fault record.

Events can also be assigned to different output channels: LED, digital output, e-mail. Events are categorized by basic device functions (device, PQ, impulse current, ...) and their sub-functions — e.g. for PQ: voltage magnitude, frequency, unbalance

User-controlled

The user can start a fast data transfer by pressing a button on the device or via the cloud.

The 3-second average values are continuously sent to the cloud over a period of 10 minutes.

This enables a detailed insight into the current status quo.

4. Service description Page 13 from 69

4.6 Measured values – evaluation of power quality (PQ)

Standard parameter set

To ensure that the results obtained in the field of public electricity supply networks are comparable, the limit values according to EN 50160 are applied. These cannot be changed by the user.

PQ overview

If the device is registered in DEHNmonitor PQ (cloud of DEHN), the results of the standard analysis are visible for all users in the cloud. The positions of the devices are generalized.

Individual parameter set

At the same time, it is possible to monitor user or site-specific issues at the same time. The limit values for event detection can be specified individually for this purpose.

The start of application of an individual parameter set can also be defined (immediately or by date). This allows a parameter set to be set specifically for an observation period.

Example: A desired target corridor for the voltage characteristics can be monitored

Example: Monitoring for an industrial environment according to the specifications of the IEC 61000-2-4 standard

4. Service description Page 14 from 69

4.7 Measurement site concept

Measurement site

The measurement site concept is only available in DEHN's cloud, the DEHNmonitor PQ. Each device is assigned to a virtual measurement site in the DEHNmonitor PQ via its serial number from the time of manufacture. The DEHNrecord SD is configured via the measurement site and returns data to the measurement site.

The virtual measurement sites have a name and can be configured individually. The user can manage "his" devices via his own measurement sites (name, position, ...).

When a DEHNrecord SD is replaced, the "historical" data is retained in the measurement site. Via the serial number, a new/different device can be assigned to the measurement site again.

Measurement sites can also be shared with other users/organizations. Registration in the cloud is required.

Measurement site type

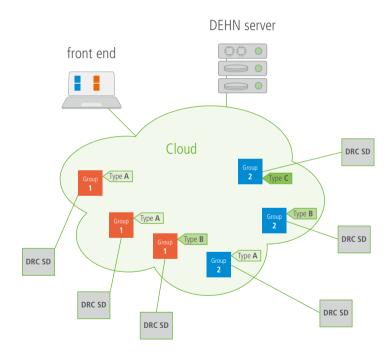
A measurement site type defines a specific configuration (parameters, limit values, output channels) that can be assigned to several DRC SD.

Example: The measurement site type "IT customer" evaluates special parameters that are relevant for data centers.

Changes to the measurement site type are automatically transferred to all measurement sites with the corresponding measurement site type.

Measurement site node

Measurement sites can be grouped. This allows e.g. common evaluations. Within the groups, the measurement site types can be different and, for example, evaluate different limit values for the current.


Example: All measurement sites of the city "Augsburg" are grouped. This enables a regional evaluation of e.g. 100 measurement sites.

4. Service description Page 15 from 69

Principle of the measurement site concept

Measurement sites of the same measurement site type behave in the same way and can be parameterized easily and with little effort via the cloud. This is a key benefit for managing many devices.

This concept is available in DEHNmonitor PQ.

4. Service description Page 16 from 69

4.8 Configuration

Web server

The basic settings can be entered via the internal web server: Location, assignment and type of external coils/transducers for current measurement, parameters of the mains signalling voltage.

More detailed explanations of the device settings can be found in chapter 10.4.

Modbus TCP

Device access via Ethernet interface enables access to parameters, limit values, current, cyclical data / status and event data.

Cloud access

The device can be configured via the DEHNmonitor PQ. You have access to the current, cyclic and past data/status/event data including detailed histories.

At present, the DEHNmonitor PQ is still in test mode.

4. Service description Page 17 from 69

4.9 Events and output channels

Events

Events are generated by:

- Evaluation of measured values (every exceeding of a limit value of all measurement functions generates an event)
- Digital input
- Keystroke
- Command from the cloud
- The device itself

Example: voltage measurement, exceeding a limit value

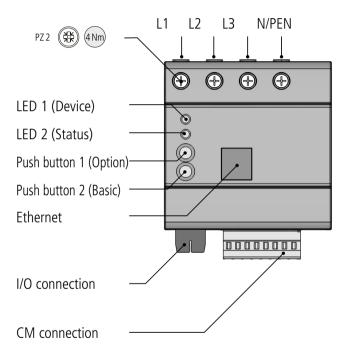
Example: digital input, SPD monitoring

Example: briefly press button 2 -> Start web server, LED 1 (device) lights up blue.

Example: device update -> "Firmware update successful" is reported to the cloud

Output channels

There are three output channels:


- Ethernet (Cloud, Modbus TCP)
- LED
- Digital output

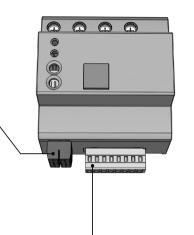
The e-mail notification is provided via the cloud (DEHNmonitor PQ)

Example: connection establishment cloud -> LED 1 (device) green Example: SPD monitoring, a digital input triggers an e-mail at the measurement site and switches LED 2 (status) to red/yellow

5. Device description Page 18 from 69

Cross-sectional area: 1.5 - 6 mm² fine-stranded/stranded-wire 1.5 - 10 mm² solid-wire

A slotted screwdriver (size 0) is required to unlock the push-in connectors


Description	Function				
L1	Measurement input and power supply for model DRC SD 1				
(L1), L2, L3, N	Measurement input				
LED 1 (Device)	Green (flashing): Start Green (lights up): Cloud connection active Blue: Web server active Yellow: Action 1 active Red: Action 2 active (RGB-LED, active status messages are displayed consecutively)				
LED 2 (Status)	Lights up green: power quality OK (in factory setting, RGB-LED, can be assigned to other device functions)				
Push button 1 (Option)	Short (< 1 s): Action 1: start fast data transfer Long (> 5 s): Action 2: device stop/start Long (> 10 s): factory reset				
Push button 2 (Basic) Short (< 1 s): activate Web server Long (> 5 s): device reset					
Network connection: Ethernet Connection to internal Web server, Modbus TCP, cloud					
I/O connection	Connections for impulse current sensor, Power supply int./ext., digital inputs and outputs				
CM connection	Connections for current sensors				

I/O connection (Input, output, supply, impulse coil)

Description		Term	ninal	
Impulse current sensor	lmp2	2	1	lmp1
24 Volt version (Model DRC SD 2) Ext. power supply +24 V _{DC}				Ue+ (+24 V in)
230 Volt version (Model DRC SD 1) Auxiliary voltage, output +12 V _{DC} , exclusively for the operation of the potential-free digital inputs	Ue-	4	3	Ue+ (+12 V out)

	Θ (Observe	polarit	y! ⊕
Input 1: max. 30 V _{DC}	11.2	6	5	11.1
Input 2: max. 30 V _{DC}	12.2	8	7	12.1
Input 3: max. 30 V _{DC}	13.2	10	9	I3.1

Output 1 (potential-free contact) max. 30 V, max. 500 mA	01.2	12	11	01.1
Output 2 (potential-free contact) max. 30 V, max. 500 mA	02.2	14	13	02.1

CM connection (Current sensors)

Terminal	1	2	3	4	5	6		8
Description	IL1.1	IL1.2	IL2.1	IL2.2	IL3.1	IL3.2	IN.1	IN.2
Current Sensor	L1		L	2	L	3	١	١

Cross-sectional area plug (push-in):

0.08 - 2.5 mm² solid-wire

0.25 -1.5 mm² with ferrule

A slotted screwdriver (size 0) is required to unlock the push-in connectors

6. Mounting Page 20 from 69

6.1 Mounting as a single device

The device is mounted on a 35 mm DIN rail according to EN 60715. Use in areas with overvoltage category III.

Backup fuse

The backup fuse must be selected to match the connection line, e.g. for $1.5 \, \text{mm}^2 -> B \, 16 \, A$

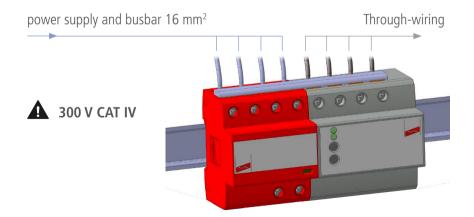
6. Mounting Page 21 from 69

6.2 Mounting with surge protective device and busbar

This combination is, among other things, for use in areas with overvoltage category IV.

Suitable busbars are available for connection to a surge protective device (SPD).

For more information, see the following chapter "Use with overvoltage category IV".


Installation and connection of a DEHNrecord SD as well as possible further wiring via its connection terminals may only be carried out by a qualified electrician in accordance with the installation standards of the country.

Backup fuse

The specifications of the respective SPD must be observed.

Through-wiring

In the case of further wiring via the terminals of the DRC, the backup fuse must be selected accordingly.

The latching elements of the devices have a permanent release position to facilitate joint mounting/removal on the DIN rail.

6. Mounting Page 22 from 69

6.3 Use with overvoltage category IV

Basically, the current and voltage measuring inputs of the DEHNrecord SD are designed for measuring category 300 V CAT III according to EN 61010-2-030.

This measurement category includes corresponding test levels (4 kV) for overvoltage category III at 300 V according to EN 60664.

If the DEHNrecord SD is located in the protected area of a surge protective device (SPD), it can also be used in overvoltage category IV. The SPD must limit the overvoltages to a level below 2.5 kV.

The SPD must have an optical defect indicator and should be in the same field of view as the DEHNrecord SD.

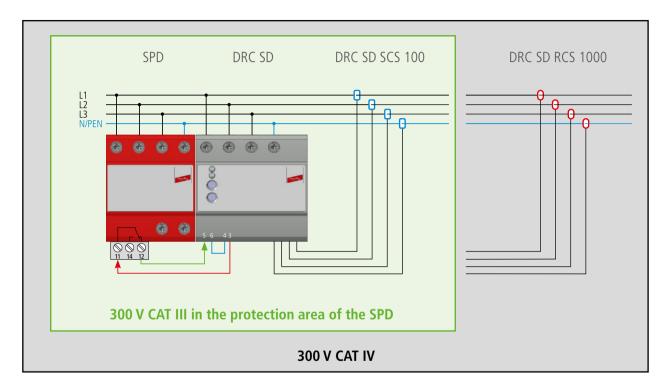
Within the protection range of the SPD, the measurement category 300 V CAT III is achieved for the current and voltage measurement inputs of the DEHNrecord SD.

The safety instructions from chapter 2 must be observed!

It is recommended to monitor the functionality of the lightning current arresters and surge arresters used (e.g. DEHNventil, DEHNvenCi, DEHNshield, DEHNvap, DEHNguard, etc.).

See the example monitoring of the FM contact on the following pages in chapter 7.1 and 7.2.

Current measurement with DRC SD SCS 100 split core current sensors (Part No. 910 936) under CAT IV conditions:


These can be used if the protection of the SPD also applies to the current conductors on which measurements are made.

Current measurement with DRC SD RCS 1000 Rogowski coils (Part No. 910 937) under CAT IV conditions:

These can be used up to 600 V CAT IV.

The protection of the SPD does not necessarily apply to the current conductors on which measurements are made.

6. Mounting Page 23 from 69

Example:

Installation of the DEHNrecord SD with an SPD in an environment with overvoltage category IV.

In the protection area of the SPD (green area), the measurement category 300 V CAT III required for the DEHNrecord SD is achieved. At the same time, the DEHNrecord SD monitors the functionality of the SPD via its remote signalling contact.

Current measurement is optionally possible with split core current sensors (DRC SD SCS 100) or Rogowski coils (DRC SD RCS 1000).

7. Connection Page 24 from 69

7.1 Connection DRC SD 1 1 – Part No. 910 920

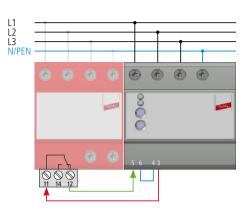
Measurement inputs

L1, L2, L3 and N are connected with cables or a suitable busbar.

Power supply

The device is supplied via the measuring input L1 and N and can bridge supply interruptions of up to 5 s. In the event of longer interruptions, the data is recorded with reduced accuracy.

Power supply UB: 230 VAC (50 Hz), max. 30 mA


Digital inputs and outputs

The status of an SPD, for example, can also be monitored via an input. An event can be signaled via an output channel (LED, digital output, e-mail).

Auxiliary voltage

The auxiliary voltage (Ue+, Ue-) is used to operate the potential-free digital inputs.

Cross-sectional area: L1/L2/L3/N: 1.5 - 6 mm² Cross-sectional area connector: 0.25 - 1.5 mm²

Example wiring of an SPD with remote signalling contact:

- Connect SPD-contact (terminal 11) with auxiliary voltage 12 Vpc (I/O connector terminal 3)
- Feedback from SPD contact (terminal 12 or 14) to digital input I1.1 (I/O connector terminal 5)
- · Connection ground (I/O connector terminal 4 and 6)

Configuration via the DRC web server:

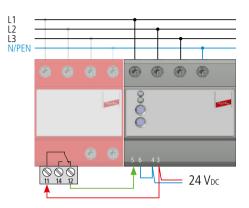
The digital input is assigned to an output channel. If the contact of the SPD opens, e.g. information is sent by e-mail, an LED is switched or a digital output is activated.

7. Connection Page 25 from 69

7.2 Connection DRC SD 2 1 – Part No. 910 921

Measurement inputs

L1, L2, L3 and N are connected with cables or a suitable busbar.


Power supply 24 V_{DC} extern

The DRC is supplied via an uninterruptible, external voltage source. This means that voltage interruptions and dips > 5 s can also be recorded in accordance with EN 61000-4-30, Class A.

Digital inputs and outputs

The status of an SPD, for example, can also be monitored via an input. An event can be signalled via an output channel (LED, digital output, e-mail).

Cross-sectional area: L1/L2/L3/N: 1.5 - 6 mm² Cross-sectional area connector: 0.25 - 1.5 mm²

Example wiring of an SPD with remote signalling contact:

- Connect SPD contact (terminal 11) with power supply 24 V_{DC} (I/O connector terminal 3)
- Feedback from SPD contact (terminal 12 or 14) to digital input I1.1 (I/O connector terminal 5)
- · Connection ground (I/O connector terminal 4 and 6)

Configuration via the DRC web server:

The digital input is assigned to an output channel. If the contact of the SPD opens, e.g. an information is sent by email, an LED is switched or a digital output is activated.

7. Connection Page 26 from 69

7.3 Impulse current sensor DRC SD ICS (Part No. 910 935) *

With the optionally available impulse current sensor, impulse currents of up to 100 kA (8/20 μ s, $10/350 \mu$ s) can be recorded on **insulated** conductors.

Typical mounting locations are grounding connections of surge protective devices, equipment and lightning protection components.

The sensor must be activated via the web server or the cloud.

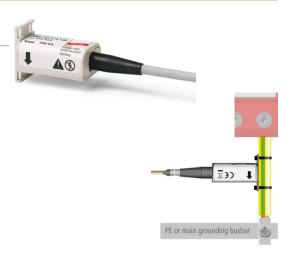
Further settings such as the trigger threshold can then also be configured.

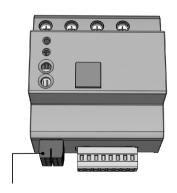
Mounting the sensor

The sensor can be attached to the current path to be monitored with two cable ties. The arrow shows the positive impulse current direction. To avoid influences from neighboring conductors, the measurement should only be made on individually laid conductors. Mounting may only be carried out on insulated, non-hazardously active conductors.

Connection on the device

The sensor is connected to the DEHNrecord SD, Connection I/O:


brown wire \rightarrow terminal 1 = Imp1


white wire \rightarrow terminal 2 = Imp2

Maximum stripping of the connection cable: 5 mm

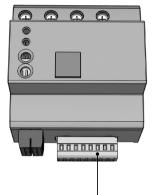
Test and configuration

The connection of the impulse current sensor can be configured via the internal web server of the DEHNrecord SD or the cloud.

I/O connection

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

7. Connection Page 27 from 69


7.4 Current sensors

Flexible Rogowski coils (DRC SD RCS 1000, Part No. 910 937) or split core current sensors (DRC SD SCS 100, Part No. 910 936) are available as accessories.

Up to 4 power frequency load currents can be recorded per device. From this, power values and energy values are calculated. The usage is to be parameterized via the web server and can be configured individually.

Connection to the device

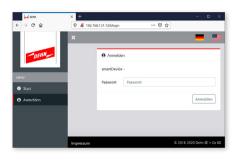
The sensors are connected to the CM connection.

CM connection (current sensors)

Terminal	1	2	3	4	5	6	7	8
Description	IL1.1	IL1.2	IL2.1	IL2.2	IL3.1	IL3.2	IN.1	IN.2
Current sensor	L1		L	2	L	3	١	١

8. Commissioning Page 28 from 69

8.1 Step 1 – Apply the voltage


After applying the voltage: LED 1 (Device) flashes green when the power supply is correct

LED 2 (Status) lights up green when the power quality is good (in factory configuration)

8.2 Step 2 – Connection to the web server

Connect DEHNrecord SD directly to computer:

- 1. Configure computer: IP 169.254.0.1, Sub. 255.255.255.0
- 2. Connect computer and DEHNrecord SD directly with network cable
- 3. Activate web server: press push button 2 (Basic) briefly, LED 1 (Device) lights up blue
- 4. Access with browser: http://169.254.0.10 Password in delivery state: smartdevice

8.3 Step 3 – Check

After successful login, the following properties can be checked and settings can be made, for example:

Rotation field direction of the voltage connections, connection of the current sensors, connection of the impulse current sensor.

8. Commissioning Page 29 from 69

8.4 Step 4 – Configuration

The DEHNrecord SD can be configured appropriately via the web server.

Instructions for device settings can be found in chapter 10.

Access to the cloud server is preconfigured (MQTT, port 8883).

LED 1 (Device) lights up permanently green as soon as access to the DEHNmonitor PQ is working.

Product registration

For successful product registration at DEHNmonitor PQ (www.dehn.de/powerquality-monitor), the four digits after the serial number are required in addition to the serial number.

These are only printed on the DEHNrecord SD itself!

Example: "0000" in "FHA12345678-0000"

9. Functionality Page 30 from 69

LED 1 (Device)

9.1 User interface

User interface - LEDs

The display on the device is by means of 2 RGB LEDs.

These also differ by flashing or lighting up permanently.

Simultaneously active operating states are indicated by LED 1 (Device) one after the other.

Display with standard configuration

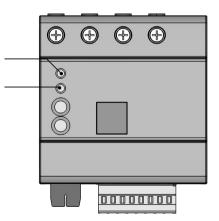
LED 1 (Device) blue Web server active

orangeAction 1 (Factory setting: fast data transfer)redAction 2 (Factory setting: device stop/start)

green flashing

Power supply ok

Gloud connection ok

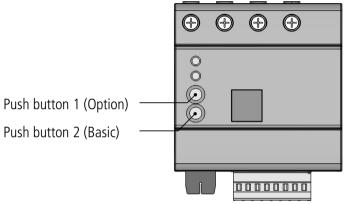

LED 2 (Status) green PQ ok

orange e.g. PQ in tolerance PQ out of tolerance

LED 2 (Status)

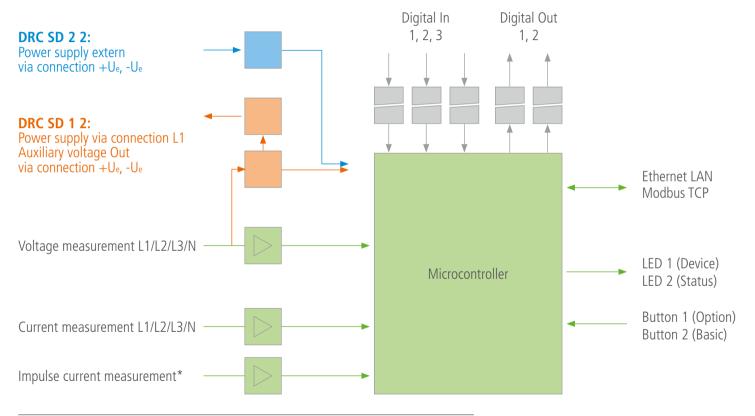
Further signals can be configured.

The assignment of LED 2 (Status) to a measuring function is done via the device settings.


9. Functionality Page 31 from 69

User interface – Push buttons

Two keys are available for operation on the device.


These have different functions depending on how long they are pressed.

Push button	Duration	function				
	short (<1 sec)	Start fast data transfer				
1 (Option)	long (>5 sec)	Device stop/start				
	long (>10 sec)	Reset to factory settings				
2 (Pacis)	short (<1 sec)	Activate web server				
2 (Basic)	long (>5 sec)	Device reset				

9. Functionality Page 32 from 69

9.2 Block diagram

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

9.3 Measured values

The DEHNrecord SD records power quality data for both continuous measured variables and event-related measured variables. It also provides energy and performance data as well as the current status of the digital inputs and outputs.

The following list provides an overview of the measured variables.

A detailed list with names and descriptions of the individual measured variables can be found in the Modbus manual

Power Quality:

- Voltage magnitude
- Frequency
- Flicker
- Voltage unbalance
- Voltage harmonics
- Voltage interharmonics
- Mains signalling voltages
- Voltage dip/swell/interruption
- Rapid voltage changes

Power frequency overvoltages:

- Events according to EN 50550
- Individual setting: e.g. undervoltage

Energy:

- Voltage
- Current
- Active power
- Apparent power
- Reactive power
- Active power
- Power factor

Digital IO:

- Digital inputs
- Digital outputs

9.4 Modbus

Detailed instructions for communication with the DEHNrecord SD via Modbus TCP can be found in the separate Modbus instructions. It contains a list and description of all Modbus registers and measured variables.

The file is available on the internet page https://www.dehn-international.com/en/dehnrecord-smart-device-power-quality

Modbus TCP		
Operating mode	TCP	
Bus participant role	Slave	
Commands	see Modbus instructions	

9.5 Communication via the network

Ports and protocols used by the DEHNrecord SD for communication via the network

Internal Communication

Port	Protocol	Description/Example
53	DNS	Resolve network name "DRC-SD serial number"
80	HTTP	Communication to the web server
123	NTP	Time synchronization
502	Modbus	Modbus/TCP-Communication
67/68	DHCP	Obtain IP address via DHCP
161	SNMP	Registration of the device e.g. in Windows Explorer to access the web server from there
	ICMP	For ping command

External Communication

Port	Protocol	Description/Example	
443	HTTPS		
8883	MQTT/TLS	Communication to the target system (Azure, Cloud)	

10. Device settings Page 36 from 69

10.1 Device settings expert mode

Device settings can be made on the web server of the DEHNrecord SD itself, via Modbus or via the cloud. For easy operation, some more complex setting options are hidden by default. If the expert mode is activated, all setting options can be displayed.

10.2 General

In addition to a description, the path for the configuration of power quality parameters can be specified here.

Path for PQ configuration	Comment	
Modbus	Limit values can be set via the Modbus	
Cloud	Limit values can be set via the cloud	

10.3 LED indicator

The display of LED 2 (Status) can be configured individually. The following options are available for this purpose:

Configuration LED 2 (Status)	green	yellow	red
PQ status standard	OK	Event occurred	Violation of a limit value
PQ status individual	OK	Event occurred	Violation of a limit value
POP display	OK	Event occurred	-
Input 1			-
Input 2	"0"	"1"	-
Input 3			-
Off	-	-	-

10. Device settings Page 37 from 69

10.4 Digital inputs, digital outputs and logic

Digital Inputs

For the three digital inputs (input 1, 2 and 3), both an event type and an event trigger can be defined.

The event type describes in which form and when events are transmitted to a cloud per 10-minute interval:

Event type	Transmission	
Off	No event is transmitted	
Instant event	Only the first event is transmitted immediately	
Collection event	The number of events is transmitted at the end of the 10-minute interval	

The event trigger defines the kind of signal change to which the inputs react:

Event trigger	Input reacts to signal change
On change	at rising and falling edge
Rising edge	with rising edge
Falling edge	with falling edge

10. Device settings Page 38 from 69

Digital Outputs

For the two digital outputs, a source and an active time can be defined in addition to the function.

Parameter

The function describes the behavior of the respective digital output.

Parameter	Setting options			Default value
Function	Off	Contact normally open	Contact normally closed	Off

The active time defines how long the output remains activated after an event occurs in the selected source. As soon as another event occurs within this time, the time window is restarted.

Parameter	Setting range	Default value
Active time	100 2000 ms	1000 ms

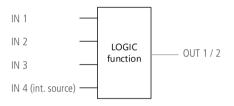
10. Device settings Page 39 from 69

The digital output responds to various internal or external event sources.

The following options are available as sources:

Source	Reaction to
Off	-
Input 1	Event at digital input 1, behavior of the input adjustable
Input 2	Event at digital input 2, behavior of the input adjustable
Input 3	Event at digital input 3, behavior of the input adjustable
POP function	Detection of a power frequency overvoltage or individually defined voltage (see chapter "power frequency overvoltages (POP)")
PQ standard	Violation of a PQ limit according to EN 50160
PQ individual	Violation of a PQ limit according to individual set of limit values
Impulse	Violation of an impulse limit*
Energy/current	Events caused by the current and energy measurement (see chapter 10.6 current measurement)
Device	Events generated by the DEHNrecord SD itself, such as cloud connection established or action by pressing a button on the device (Action 1, Action 2), firmware update successfully performed,
Cloud2Device	A command controlled from the cloud
Logic	Digital output functions as output of the LOGIC function

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021


10. Device settings Page 40 from 69

Logic

The internal logic module has four inputs and one output.

These can be configured individually and the function of the logic module can also be set.

Input 1, 2 and 3 designate the digital inputs of the DEHNrecord SD. Input 4 represents an internal event source.

To link output 1 or 2 with the logic, select "Logic" as the source under the setting for the respective output.

Parameter	Values
Function	OFF, AND, OR, XOR, NOR, NAND, XNOR
Input 1, 2 and 3 (digital inputs)	off, normal, inverted
Input 4 (internal source)	off, POP, PQ standard, PQ individual, impulse*, energy/current, device

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

10. Device settings Page 41 from 69

10.5 Network

Network settings can only be made in the web server of the DEHNrecord SD. Saved changes are applied after a restart of the device. A connection to a time server (SNTP) is required for the intended use of DEHNrecord SD.

The addresses and ports required for this must not be blocked in the network. The ports are listed in chapter 9.5 "Communication via the network".

Parameter	Setting range	Default value
DHCP	on/off	off
DNS Server 1 (IP of the DNS server for static settings)		8.8.8.8
DNS Server 2 (IP of the DNS server for static settings)		1.1.1.1
Static IP (if DHCP is disabled)	0.0.0.0 255.255.255.255	169.254.0.10
Static IP gateway (if DHCP is disabled)		0.0.0.0
Static IP netmask (if DHCP is disabled)		255.255.0.0
Time server 1 (SNTP)		de.pool.ntp.org
Time server 2 (SNTP)		ptbtime1.ptb.de
Time server 3 (SNTP)		ptbtime2.ptb.de
Time server 4 (SNTP)		ptbtime3.ptb.de
Device name (the name under which the device is visible in the network if DHCP is activated)	Not adjustable	DRC-SD-FHAxxxxxxxx (FHAxx = Serial number)
MAC adress	Not adjustable	Device-dependent
Timeout web server (time in seconds after the web server is deactivated)	120 3600 s	600 s

10. Device settings Page 42 from 69

Cloud settings (only accessible in web server, expert mode)

MQTT server Adress: dkg-sdc-prod-iothub-devices-01.azure-devices.net

MQTT username: dkg-sdc-prod-iothub-devices-01.azure-devices.net/FHAxxxxxxxx/?api-version=2019-10-01

FHAxxxxxxxx = serial number of the device

10. Device settings Page 43 from 69

10.6 Power frequency overvoltages according to EN 50550 - POP

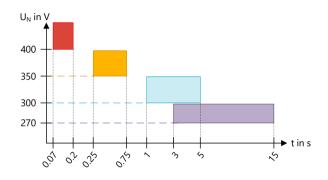
Function

The DEHNrecord SD detects power frequency overvoltages as defined in the EN 50550 standard.

In addition to the four voltage time windows specified by the standard, a fifth detection criterion can be configured.

This can also be used to detect undervoltage.

Parameter for power frequency overvoltages according to EN 50550


Selectivity factor

This factor can be used to determine the time at which the digital output is switched if "POP" is set as the source for it. By default, this is set to 1, which corresponds to half of the voltage-time window minus the switch-off time reserve.

Switch-off time reserve

This time serves as the reserve, which a potential protective device requires from recording a trigger signal to switch off.

Parameter	Setting range	Default
Selectivity factor	0 2	1
Switch-off time reserve	0 0.13 s	0.02 s

Voltage time window from EN 50550 within which a POP main protective device must trip.

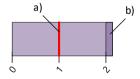


Illustration of the selectivity factor a) as well as the switch-off time reserve b).

10. Device settings Page 44 from 69

Parameters for individual recording criteria

Individual recording criterion active

Herewith the additional criterion for a power frequency overvoltage or undervoltage can be activated.

The selectivity factor and the switch-off time reserve do not apply to this criterion.

Voltage

Individual voltage threshold (2...440V). Attention: Exceeding or falling below threshold must be set under "Status/Direction"

Status/Direction

Setting whether triggering occurs when the voltage threshold is exceeded or not reached.

Duration

Delay time after which triggering occurs when the voltage threshold is exceeded or not reached.

Individual recording criterion	Setting range	Devault value
Voltage	2 440 V	325 V
Duration	0.04 3600 s	1 s
Status/Direction	Trigger when exceeding or falling below the voltage threshold	exceeding

10. Device settings Page 45 from 69

10.7 Current measurement

Measured variables

The following measured variables are recorded via the respective measuring circuits: voltage U, current I, active power P, apparent power Q, reactive power S, active power E, frequency f.

Base values are the effective values over 200 ms or 10 s for the frequency.

The further mean values are calculated from this (3 s, 5 min.).

Measuring intervals

For data provided in the cloud or via Modbus, a measuring interval of 5 minutes is defined.

This measuring interval also corresponds to the averaging time over which the average value is calculated for each measured variable.

Fast data transfer

During "fast data transfer", the 3-second average values (10 s for frequency) are transferred to the cloud.

There they can be visualized instantaneously and are also available as an event for later viewing.

10. Device settings Page 46 from 69

Events

An event type with an associated limit can be configured for each phase individually and independently of one another. The following event types fall under the event category En.

Event types	configura	ble for curre	nt measuren	nent input	configurable limit value range
	L1	L2	L3	N	
Current	1	✓	✓	1	0.05 ln 2 ln
Active power	1	1	✓	_	
Reactive power	1	1	√	_	0.5 Un · 0.05 In 1.5 Un · 1.5 In
Apparent power	1	1	✓	_	
Reversal of current direction	1	1	√	1	without
Zero current	1	1	✓	1	0.005 ln 0.2 ln
Active power momentarily	over 3 phases			_	0 999 999 kWh
Active power meter	over 3 phases			_	0 9 999 999 kWh

If an event is recognized, i.e. the recorded measured value exceeds or falls below the associated limit or fulfills the underlying condition, this event is provided with the corresponding data (event type and category, time stamp, parameters (measured value)) and included in the transfer to the cloud for archiving and evaluation. It is also available for retrieval in the corresponding Modbus register.

Via the configuration of the device, an event category can be assigned to the status LED and / or to one of the two digital outputs and / or for the logic connection of the digital Inputs and / or to an email notification channel.

This means that with each event the output channel is updated / activated according to its configuration.

10. Device settings Page 47 from 69

10.8 Mains signalling voltages

Mains signalling voltages are used by the network operator to communicate via the energy network using ripple control signals. These differ regionally. Global settings (frequency of the mains signalling voltage, duration and trigger threshold) must be made here for correct detection of these signals. These apply both to the standard parameter set according to EN 50160 and to the individual PQ parameter set.

Frequency of the mains signalling voltage

Frequency of the ripple control signal, the 3-second mean value of which is compared with the limit.

Duration

Period over which compliance with the limit is monitored.

Trigger threshold

If this is exceeded, the duration of the monitoring starts. Specified as a deviation in% of the nominal voltage.

You will find the setting range and devault values in the chapter "PQ configuration" on page 51.

10.9 Factory reset

To reset the device to the factory settings, press button 1 (Option) for at least 10 seconds.

As soon as both LEDs go out, DEHNrecord SD restarts and is reset to the default values.

Warning: this will also reset the network settings.

11. PQ Configuration Page 48 from 69

Limits and parameters for the evaluation of the power quality (PQ) are configured here according to individual criteria.

The PQ configuration is done either via Modbus or via the cloud (= default setting).

The path can be changed in the device settings under general at "Path for PQ configuration".

11.1 General

Observation period

The status of the power quality is evaluated over this period. One day or one week can be set.

Observation start

Can be set to "Fix" (manually adjustable start time) or to "Auto" (next possible start time).

Consider flagged PQ intervals for event counter

Measuring intervals can be marked according to the flagging concept described in EN 61000-4-30.

Flagged data indicate that they may be unreliable. The user is free to take them into account or not.

Periods

For various power quality characteristics, time periods can be defined within an observation period in which the limits must be observed. This period is specified in % of the selected observation period and indirectly defines the permissible number of events within an observation period.

11.2 Voltage magnitude

The measured voltage magnitude is defined by the rms value of the voltage between the outer and neutral conductor (or outer and PEN conductor). It is averaged over a time window of 10 minutes.

Limits

Two sets of limit values are available. For everyone there is a minimum and a maximum as well as a period in which the limits must be adhered to before the violation occurs. The period is given in % of the selected observation period.

11. PQ Configuration Page 49 from 69

11.3 Frequency

The frequency of the mains voltage is determined over a time window of 10 seconds in each case.

Limits

Two sets of limits are available.

For each, in addition to a minimum and maximum, there is also a period of time during which the limits must be observed before violations occur.

The period is given in % of the selected observation period and the minimum and maximum in deviation from the nominal value.

11.4 Flicker

Flicker is visually perceptible change in luminosity of light sources.

A distinction is made between short term flicker Pst (10-minute value) and long term flicker Ptt (2-hour value).

Limits

Limits can be defined for flicker (short and long term).

In addition, a period can be defined in which the limits must be observed before a violation occurs.

The time period is specified in % of the selected observation period.

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

11. PQ Configuration Page 50 from 69

11.5 Voltage dip, voltage swell, voltage interruption

Half-period rms values are measured to record these characteristics.

The rms value of the voltage is calculated over an entire period and updated after every half period.

This method combines the accuracy of a full-cycle measurement and the speed of a half-cycle measurement.

11.6 Voltage dip

As soon as the voltage drops below a defined threshold, this is evaluated as a voltage dip.

Limits

In addition to the threshold, a hysteresis can also be configured individually.

Voltage dips are categorized according to table 2 of EN 50160 and the number of dips permitted before it is categorized as a violation can be defined for each individual category.

In addition, there is a field for categories that are not defined in the table.

11.7 Voltage swell

If the voltage exceeds a defined threshold, a voltage swell is detected.

Limits

In addition to the threshold, a hysteresis can also be configured individually.

Voltage swells are categorized according to table 3 of EN 50160 and the number of swells permitted before it is categorized as a violation can be defined for each individual category.

There is also a field for categories not covered by the table.

11. PQ Configuration Page 51 from 69

11.8 Voltage interruption

An interruption of the voltage is detected as soon as it falls below a certain threshold on all phases.

Limits

In addition to the threshold, a hysteresis can also be configured individually.

Additionally, a time duration can be defined, where an interruption is categorized as either short or long interruption. It is also possible to define a permitted number of interruptions per category before it is categorized as a violation.

11.9 Unbalance

The unbalance of a three-phase system is represented by the quantity u_2 using the symmetrical components. This represents the ratio of the negative sequence component to the positive sequence component in percent.

Limits

In addition to the permitted maximum, a time period can be defined in which the limits must be observed before a violation occurs.

11. PQ Configuration Page 52 from 69

11.10 Total harmonic distortion THD, harmonics, interharmonics

The distortion of the mains voltage is described with the help of harmonics and interharmonics.

Harmonics are integer multiples of the fundamental and are characterized by an order h --> e.g. U_{h3} for the third order harmonic (in the 50 Hz network this would be 150 Hz).

Interharmonic voltages are non-integer multiples of the fundamental.

The total harmonic distortion THD (also known as distortion factor) is calculated, in simplified terms, from the sum of the root mean square of the harmonic to fundamental ratios up to a certain order h.

Limits

In addition to the maximum permitted for each harmonic and interharmonic, a time period can be defined in which the limits must be observed before a violation occurs.

The maximum is given as a % value to the rms value of the fundamental (50 Hz).

In addition, the highest order up to which the individual harmonics are included in the calculation of the THD can be defined.

11.11 Mains signalling voltages

Power supply companies often use their network for communication purposes.

Mains signalling voltages, so-called ripple control signals, are used for this purpose.

The frequency of the mains signalling voltage is the carrier frequency of the modulated signal.

Parameter

In addition to the frequency of the mains signalling voltage itself, the duration and trigger threshold from which a mains signalling voltage is detected can be set individually. The duration describes the time window in which monitoring starts after the trigger threshold has been exceeded.

These parameters are defined under Device settings, as they apply to both the standard and the individual limit value.

11. PQ Configuration Page 53 from 69

Limits

For the evaluation, both a limit value and a time period can be defined in which the limit value must be adhered to before a violation occurs.

The maximum level of a mains signalling voltage depends on the selected frequency of the mains signalling voltage.

The max. limit value of this voltage is automatically generated based on the specifications of EN 50160 Fig. 1.

11.12 Rapid voltage changes

A rapid voltage change is when the voltage magnitude is at a nearly constant level for a period of time and suddenly a voltage change occurs that significantly deviates from that level.

Limits

The voltage change level defines the limit from which height the deviation from the constant level is considered as a rapid voltage change.

This limit is given in % of the nominal voltage.

In addition, a hysteresis can be defined for this value and a permissible number of rapid voltage changes in the selected observation period.

In addition, a minimum and a maximum must be defined, above or below which the rapid voltage change is categorized as a dip or swell. These values are identical with the thresholds of the latter.

11. PQ Configuration Page 54 from 69

11.13 Values for PQ characteristics

PQ feature	Parameter	Setting range	Devault value (EN 50160)
	Period 1	0 100 %	95 %
	Max. 1	+0.1 +25 %	+10 %
Voltago magnitudo	Min. 1	-250.1 %	- 10 %
Voltage magnitude	Period 2	0 100 %	100 %
	Max. 2	+0.1 +25 %	+10 %
	Min. 2	-250.1 %	- 15 %
	Period 1	0 100 %	99.5 %
	Max. 1	+0.1 +25 %	+1 %
Francisco es	Min. 1	-250.1 %	-1 %
Frequency	Period 2	0 100 %	100 %
	Max. 2	+0.1 +25 %	+4 %
	Min. 2	-250.1 %	-6 %
Flighter /lengtherms	Period	0 100 %	95 %
Flicker (long term)	Max.	0.2 10	1,0
Fligher (chart torm)	Period	0 100 %	-
Flicker (short term)	Max.	0.2 10	-

11. PQ Configuration Page 55 from 69

PQ feature	Parameter	Setting range	Devault value (EN 50160)
	Number	0 1000	-
Voltage dip	Threshold	-501 %	-10 %
	Hysteresis	0 10 %	2 %
	Number	0 1000	-
Voltage swell	Threshold	50 1 %	10 %
	Hysteresis	0 10 %	2 %
	Number	0 1000	-
W.E. J. J.	Threshold	1 10 %	5 %
Voltage interruption	Hysteresis	0 10 %	2 %
	Duration (short term / long term)	1 600 s	180 s
Habalan a	Period	0 100 %	95 %
Unbalance	max.	0.5 5 %	2.0 %
	Period	0 100 %	100 %
THD	max.	0.1 20 %	8 %
וחט	Order h Up to this order, the individual harmonics are taken into account for the calculation of the THD.	0 50	40

PQ feature	Parameter	Setting range	Devault value (EN 50160)
Harmonics	Period (valid for all orders)	0 100 %	95 %
HdIIIIOIIICS	max.	0 20 %	see table H
Interharmonics	Period (valid for all orders)	0 100 %	-
Interharmonics	max.	0 20 %	-
	Period	0 100 %	99 %
	max.	0 10 %	nach EN 50160
Mains signalling voltages	Frequency of the mains signalling voltage (to define under device settings)	100 3000 Hz	175 Hz
	Recording duration (to define under device settings)	3 120 s	120 s
	Trigger threshold (to define under device settings)	0.3 4.9 %	4.5 %
	Number	0 1000	-
Rapid voltage changes	Level	1 6 %	5 %
	Hysteresis	0.5 3 %	2.5 %
	min. (= threshold bei Voltage dip)	-501 %	-10 %
	max. (= threshold bei Voltage swell)	1 50 %	10 %

Table H: Limits for individiual harmonics

Order h	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Max. in %	2.0	5.0	1.0	6.0	0.5	5.0	0.5	1.5	0.5	3.5	0.5	3.0	0.5	1.0	0.5	2.0	0.5	1.5	0.5	0.75	0.5	1.5	0.5	1.5

12. Technical data Page 57 from 69

Power supply	DRC SD 1 1 (Part No. 910 920)	DRC SD 2 1 (Part No. 910 921)
Power supply	230 Vac (via L1 and N)	24 Vpc SELV (II)
Input voltage range	185 - 265 Vac, 47 - 53 Hz	18 - 30 Vpc
Current consumption	30 mA (max.)	100 mA (max.)
Power consumption	8 W (max.)	3 W (max.)
Max. permissible input voltage in the event of a fault (with disconnected neutral)	400 Vac	
Supply voltage buffering in case of power failure	min. 5 seconds	depending on power supply
Supply voltage buffering in case of voltage dip up to 70 %	min. 60 seconds	depending on power supply
Permitted overvoltage	463 Vac for 5 seconds	

12. Technical data Page 58 from 69

Measurement inputs L1/L2/L3/N	
Nominal input voltage	230/400 Vac
Isolation: connections to digital inputs/outputs and to DC in/out	galvanically isolated
Connection cable	1.5 mm ² - 6 mm ² (fine-stranded/stranded wire), 10 mm ² (solid wire)
Backup fuse	Suitable for the connecting cable, e.g. for 1.5 mm ² -> B 16A
Backup fuse in combination with an SPD	The specifications of the respective SPD must be observed

Analog inputs	
Impulse current measurement (1 x)	Impulse current sensor DRC SD ICS for recording of surge currents up to 100 kA
Voltage measurement (3 x)	Recording the AC mains voltage of all three phases
Current measurement (4 x)	Rogowski coils or split core current transformers for recording AC mains currents of all three phases as well as neutral conductor

12. Technical data Page 59 from 69

Interfaces	
Ethernet (1x RJ45)	Query and configuration by ext. controllers (Modbus TCP, Slave), cloud connection, communication with internal web server
Digital Inputs (3 x)	Recording digital signals Nominal voltage 24 VDc, max. 30 VDc; high > 8.5 V; low < 7.35 V
Digital Outputs (2 x)	Output of a digital signal via a potential-free contact (max. 24 V _{DC} , max. 0.5 A, max. 0.25 W)

User interface	
Push buttons (2 x)	Control during operation
LEDs (2 x RGB)	Display of different states

Standards	
Safety (MSRL)	EN 61010-1: 2010 + Cor. 2011 EN 61010-2-030: 2010 + Cor. 2011
EMC (MSRL, industry, power plants)	EN 61326-1: 2013 EN 61000-6-5: 2015 + AC: 2018
Power quality (devices/features)	EN 62586-1: 2017 EN 61000-4-30: 2015 EN 50160: 2010 + Cor. 2010 + A1: 2015
Power frequency overvoltage / POP	EN 50550: 2011 + AC: 2012 + A1: 2014

12. Technical data Page 60 from 69

Device general	DRC SD 1 1 (Part No. 910 920)	DRC SD 2 1 (Part No. 910 921)
Dimension B x H x T	90 (5 DIN modules) x 90 x 65 mm	
Weight	400 g (500 g incl. packaging)	335 g (435 g incl. packaging)
Housing - material	PA 12, grey	
Housing - impact resistance	IK 06	
Installation location	control cabinet	
Mounting type	DIN rail in main or sub-distribution	n, operation with panel cover
Connection supply/mains voltage measurement	Busbar 2-pol./4-pol., solid wire 2-p	pol./4-pol.
Protection class	IP20	

Possible combinations	
With SPD (product family), directly with busbar	DEHNventil, DEHNshield, DEHNguard, DEHNbloc modular
With SPD (product family), freely wired	DEHNvenCI, DEHNbloc Maxi, DEHNrail

12. Technical data Page 61 from 69

Ambient conditions (defined for device class PQI-A-FI1 according to DIN EN 62586-1)	
Ambient temperature: storage and transport	-40 °C to +70 °C
Ambient temperature: nominal operating range	-10 °C to +45 °C
Ambient temperature: operating limit range	-25 °C to +55 °C
Relative humidity: 24-h average	storage and transport: from 5 % to 95 % Indoor operation: from 5 % to 95 % Note: no condensation, no ice
Contamination by dust, salt, smoke, corrosive/flammable gas, vapors	no significant pollution
Vibrations, seismic shocks	IEC 60721-3-1, IEC 60721-3-2, IEC 60721-3-3
Electromagnetic immunity	DIN EN 61000-6-5:2016-07
Operating height	max. 2000 m above sea level
Pollution level	2
Overvoltage category (related to the mains supply voltage)	III, together with SPD: IV
Measurement category	300 V CAT III, together with SPD: 300 V CAT IV

12. Technical data Page 62 from 69

Voltage measurement inputs	
Connection to TT and TN-S system	L1, L2, L3, N
Connection to TN-C system	L1, L2, L3, PEN
Connection to IT system	No use possible
Cross-sectional area	1.5 - 6 mm² fine-stranded/stranded wire 1.5 - 10 mm² solid wire
Busbar	Copper, 16 mm², contact stud length ≥ 15.5 mm, exit at top
Busbar, for use with DEHNshield, DEHNguard (4 DIN modules)	MVS 4 8 11, 910 814
Busbar, for use with DEHNventil, DEHNbloc modular (8 DIN modules)	MVS 4 56, 910 614
Parallel connection busbar and line	possible
Input voltage Lx — N	230 Veff, 50 Hz, max. 300 Veff
Input rated voltage/measurement category	300 V CAT III
Input rated voltage/measurement category together with SPD (Up $\leq 2.5 \ kV)$	300 V CAT IV

Detection of power frequency overvoltages	
Limits	according to EN 50550
Evaluated voltages	L1 - N, L2 - N, L3 - N
Characteristic for digital output signal	> 275 V / 3 15 s; > 300 V / 1 5 s; > 350 V / 0.25 0.75 s; > 400 V / 0.02 0.07 s; individual 2 440 V / 0.04 3600 s

12. Technical data Page 63 from 69

Current measurement inputs for designated, external split core current transformers or Rogowski coils	
Number	4
Connection cross-section	0.08 - 2.5 mm ² solid wire 0.25 - 1.5 mm ² with ferrule
Parameterization	via web server, cloud or Modbus
Isolation current measurement input	no galvanic isolation

12. Technical data Page 64 from 69

Split core current sensors, DRC SD SCS 100 (Part No. 910 936)	
Measuring range	0 - 100 A (120 A max.), 50 Hz
Bandwidth	1.5 kHz
Accuracy class	classe 1 according to IEC 61869-2
Ring diameter inside	16 mm
Dimension (W x D x H)	40.8 x 33.2 x 56.1 mm
Connection cable length	1 m
Attachment to the conductor to be measured	with 2 cable ties
Weight	120 g
Safety/insulation, touchability of sensors	300 V CAT III
Safety/insulation, to the live conductor	300 V CAT III

Current sensors – Rogowski coil, divisible, flexible, DRC SD RCS 1000 (Part No. 910 937)	
Measuring range	0 - 1000 A (2000 A max.), 50 Hz
Bandwidth	50 kHz
Ring diameter inside	150 mm
Dimension	Ø 10 mm
Connection cable length	3 m (alternative 1 m)
Weight	250 g
Safety/insulation, touchability of sensors	300 V CAT III
Safety/insulation, to the live conductor	1000 V CAT III or 600 V CAT IV

12. Technical data Page 65 from 69

Impulse current measurement input for designated, external impulse current sensors*		
Number	1	
Cross-sectional area	0.08 - 2.5 mm ² solid-wire 0.25 -1.5 mm ² with ferrule	
Connection type	push-in	
Measuring range	0 100 kA	
Voltage magnitude resolution	100 A	
Sampling rate	1 μs	
Waveform	8/20 - 10/350 µs	
Recording length	max. 500 ms	
Impulse values (calculated)	I _{peak} , Q _{ges} , T _r , T _w , category duration	
Trigger threshold voltage level	parameterizable via internal web server or via the cloud	

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

12. Technical data Page 66 from 69

Impulse current sensor – DRC SD ICS 100 (Part No. 910 935)*		
Recording range l _{peak}	50 kA, waveform 8/20 - 10/350 μs	
Bandwidth	50 kHz	
Attachment to the conductor to be measured	with 2 cable ties (included)	
Dimensions (W x D x H)	23 x 30 x 75 mm	
Connecting cable length	3 m (incl. fastening and kink protection)	
Weight	25 g	
Safety/insulation, touchability of sensors	300 V CAT III	

Mounting may only be carried out on insulated, non-hazardously active conductors.

^{*} Variant with impulse current measurement expected to be available from Q4 - 2021

12. Technical data Page 67 from 69

Digital outputs (2 x)		
Туре	PhotoMOS relay, bidirectional	
Voltage max.	30 V	
Current max.	500 mA	
Power max.	500 mW	
Switch-on resistance max.	150 mΩ	
Polarity	arbitrary	
Isolation: connections to voltage measurement inputs	300 V CAT III	
Isolation: connections to other digital outputs	galvanically isolated	
Isolation: connections to external DC supply	100 V	

Digital inputs (3 x)		
Туре	multifunctional	
Voltage	nominal voltage 24 Vpc, max. 30 Vpc; high > 8.5 V; low < 7.35 V	
Current consumption	max. 10 mA	
Polarity	arbitrary	
Isolation: connections to voltage measurement inputs	300 V CAT III	
Isolation: connections to other digital outputs	galvanically isolated	
Isolation: connections to external DC supply	100 V	

12. Technical data Page 68 from 69

Measurement power quality	
Measurement method	EN 61000-4-30:2015, class A
Evaluation	EN 50160:2010 + Cor. 2010 + A1:2015 or individually parameterizable
Measurement	3-phase (L1, L2, L3, N/PEN)
Nominal value voltage/frequency	230 V _{eff} / 50 Hz

Measurement power quality	Measuring range	Measurement accuracy/method
Voltage magnitude	10 - 150 % of U _N	± 0.1 % of U _N
Frequency	± 15 % of f _N	± 10 mHz
Flicker	0.2 - 10 Pst	EN 61000-4-15
Dip, swell	10 - 150 % of U _N	0.2 % of U _N , ± 1 period
Interruption	< 10 % of U _N	
Unbalance	0.5 - 5 % of u ₂ and u ₀	0.15 %
Harmonics, Interharmonics	Order 2 50.	EN 61000-4-7 (class I)
Mains signalling voltage	0 - 15 % von U _N	EN 61000-4-30
Rapid voltage changes	± 1 % of U _N to dip/swell	0.2 % of U _N

13. Maintenance Page 69 from 69

The maintenance of the device is recommended no later than 5 years from handover and thereafter regularly at least every 5 years after the last maintenance.

Should the measurement results deteriorate persistently before reaching a maintenance date, early maintenance of the device is recommended.

13.1 Check

A test could be carried out, for example, by a parallel measurement with a reference device.

Reasons for premature maintenance may include:

- · The device was exposed to temperatures outside the tolerance range for a long time.
- · Frequent and extraordinary EMC phenomena

Please note:

The reason for a permanent deterioration of the measurement results may be solely the actual deterioration of the power quality without the need for premature maintenance.

13. Maintenance Page 70 from 69

13.2 Cleaning

The device must not be cleaned when it is connected.

When not connected, the device can be cleaned with a cloth dampened with water.

No liquids may penetrate the device.

13.3 Dismantling

ATTENTION

Risk of electric shock

A DEHNrecord SmartDevice may only be dismantled by a qualified electrician!

13.4 Disposal

The device must not be disposed of with household waste! Further information can be found on our homepage: www.dehn.de